Performance Analysis of ℓ0-Norm Constraint Variable Step Size Normalized Least Mean Square Algorithm

Rajni, C. Rai
{"title":"Performance Analysis of ℓ0-Norm Constraint Variable Step Size Normalized Least Mean Square Algorithm","authors":"Rajni, C. Rai","doi":"10.1109/ICRIEECE44171.2018.9008936","DOIUrl":null,"url":null,"abstract":"This paper incorporates a ℓ0 –norm sparsity constraint into variable step size normalized least mean square (ℓ0 -VSSNLMS) algorithm for identification of sparse system corrupted by additive noise. The proposed ℓ0–VSSNLMS algorithm makes a good fairness between convergence characteristics, filter stability and steady state error. The proposed (ℓ0 -VSSNLMS) algorithm incorporates a variable step size that accelerates the convergence characteristics and lowers the mean square deviation (MSD) error than in ℓ0 - NLMS with constant value of step size. The inclusive theoretical performance of ℓ0 -VSSSNLMS algorithm is analyzed in this paper with white Gaussian input under some assumptions which are suitable for practical purpose. An expression for variant step size is derived under the stability condition of proposed algorithm. Finally the implementation of the proposed algorithm is carried out in MATLAB software to manifest the improved beavior in identification of sparse system.","PeriodicalId":393891,"journal":{"name":"2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIEECE44171.2018.9008936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper incorporates a ℓ0 –norm sparsity constraint into variable step size normalized least mean square (ℓ0 -VSSNLMS) algorithm for identification of sparse system corrupted by additive noise. The proposed ℓ0–VSSNLMS algorithm makes a good fairness between convergence characteristics, filter stability and steady state error. The proposed (ℓ0 -VSSNLMS) algorithm incorporates a variable step size that accelerates the convergence characteristics and lowers the mean square deviation (MSD) error than in ℓ0 - NLMS with constant value of step size. The inclusive theoretical performance of ℓ0 -VSSSNLMS algorithm is analyzed in this paper with white Gaussian input under some assumptions which are suitable for practical purpose. An expression for variant step size is derived under the stability condition of proposed algorithm. Finally the implementation of the proposed algorithm is carried out in MATLAB software to manifest the improved beavior in identification of sparse system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
0-范数约束变步长归一化最小均方算法的性能分析
本文在变步长归一化最小均方(l0 -VSSNLMS)算法中引入了一个l0范数稀疏性约束,用于识别受加性噪声破坏的稀疏系统。提出的l0 - vssnlms算法在收敛特性、滤波器稳定性和稳态误差之间具有良好的公平性。本文提出的(l0 - vssnlms)算法采用可变步长,与恒步长的NLMS相比,加快了收敛特性,降低了均方偏差(MSD)误差。本文分析了在白高斯输入下,在一些符合实际的假设条件下,l0 -VSSSNLMS算法的包容性理论性能。在该算法的稳定性条件下,导出了变步长表达式。最后在MATLAB软件中对所提出的算法进行了实现,以体现该算法在稀疏系统识别中的改进行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ranked Rule Based Approach for Sentiment Analysis Design of Evaluation Board for Image Processing ASIC and VHDL Implementation of FPGA Interface Design and Development of IoT based System for Retrieval of Agrometeorological Parameters An Advance Tree Adaptive Data Classification for the Diabetes Disease Prediction Dual-Frequency GPS Derived Precipitable Water Vapor and Comparison with ERA-Interim Reanalysis Data Over Indian stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1