Experimental evaluation of an adiabiatic quantum system for combinatorial optimization

Catherine C. McGeoch, Cong Wang
{"title":"Experimental evaluation of an adiabiatic quantum system for combinatorial optimization","authors":"Catherine C. McGeoch, Cong Wang","doi":"10.1145/2482767.2482797","DOIUrl":null,"url":null,"abstract":"This paper describes an experimental study of a novel computing system (algorithm plus platform) that carries out quantum annealing, a type of adiabatic quantum computation, to solve optimization problems. We compare this system to three conventional software solvers, using instances from three NP-hard problem domains. We also describe experiments to learn how performance of the quantum annealing algorithm depends on input.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"152","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482767.2482797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 152

Abstract

This paper describes an experimental study of a novel computing system (algorithm plus platform) that carries out quantum annealing, a type of adiabatic quantum computation, to solve optimization problems. We compare this system to three conventional software solvers, using instances from three NP-hard problem domains. We also describe experiments to learn how performance of the quantum annealing algorithm depends on input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合优化绝热量子系统的实验评价
本文描述了一种新型计算系统(算法加平台)的实验研究,该系统采用绝热量子计算——量子退火来解决优化问题。我们将该系统与三个传统的软件求解器进行比较,使用来自三个np困难问题域的实例。我们还描述了实验,以了解量子退火算法的性能如何依赖于输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategies for improving performance and energy efficiency on a many-core Cost-effective soft-error protection for SRAM-based structures in GPGPUs Kinship: efficient resource management for performance and functionally asymmetric platforms An algorithm for parallel calculation of trigonometric functions DCNSim: a unified and cross-layer computer architecture simulation framework for data center network research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1