{"title":"RHyTHM: A randomized hybrid scheme to hide in the mobile crowd","authors":"M. Khodaei, Andreas Messing, Panos Papadimitratos","doi":"10.1109/VNC.2017.8275642","DOIUrl":null,"url":null,"abstract":"Any on-demand pseudonym acquisition strategy is problematic should the connectivity to the credential management infrastructure be intermittent. If a vehicle runs out of pseudonyms with no connectivity to refill its pseudonym pool, one solution is the on-the-fly generation of pseudonyms, e.g., leveraging anonymous authentication. However, such a vehicle would stand out in the crowd: one can simply distinguish pseudonyms, thus signed messages, based on the pseudonym issuer signature, link them and track the vehicle. To address this challenge, we propose a randomized hybrid scheme, RHyTHM, to enable vehicles to remain operational when disconnected without compromising privacy: vehicles with valid pseudonyms help others to enhance their privacy by randomly joining them in using on-the-fly self-certified pseudonyms along with aligned lifetimes. This way, the privacy of disconnected users is enhanced with a reasonable computational overhead.","PeriodicalId":101592,"journal":{"name":"2017 IEEE Vehicular Networking Conference (VNC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2017.8275642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Any on-demand pseudonym acquisition strategy is problematic should the connectivity to the credential management infrastructure be intermittent. If a vehicle runs out of pseudonyms with no connectivity to refill its pseudonym pool, one solution is the on-the-fly generation of pseudonyms, e.g., leveraging anonymous authentication. However, such a vehicle would stand out in the crowd: one can simply distinguish pseudonyms, thus signed messages, based on the pseudonym issuer signature, link them and track the vehicle. To address this challenge, we propose a randomized hybrid scheme, RHyTHM, to enable vehicles to remain operational when disconnected without compromising privacy: vehicles with valid pseudonyms help others to enhance their privacy by randomly joining them in using on-the-fly self-certified pseudonyms along with aligned lifetimes. This way, the privacy of disconnected users is enhanced with a reasonable computational overhead.