Comparison of Machine Learning-based anomaly detectors for Controller Area Network

A. Venturi, Dario Stabili, Francesco Pollicino, Emanuele Bianchi, Mirco Marchetti
{"title":"Comparison of Machine Learning-based anomaly detectors for Controller Area Network","authors":"A. Venturi, Dario Stabili, Francesco Pollicino, Emanuele Bianchi, Mirco Marchetti","doi":"10.1109/NCA57778.2022.10013527","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative analysis of different Machine Learning-based detection algorithms designed for Controller Area Network (CAN) communication on three different datasets. This work focuses on addressing the current limitations of related scientific literature, related to the quality of the publicly available datasets and to the lack of public implementations of the detection solutions presented in literature. Since these issues are preventing the reproducibility of published results and their comparison with novel detection solutions, we remark that it is necessary that all security researchers working in this field start to address them properly to advance the current state-of-the-art in CAN intrusion detection systems. This paper strives to solve these issues by presenting a comparison of existing works on publicly available datasets.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a comparative analysis of different Machine Learning-based detection algorithms designed for Controller Area Network (CAN) communication on three different datasets. This work focuses on addressing the current limitations of related scientific literature, related to the quality of the publicly available datasets and to the lack of public implementations of the detection solutions presented in literature. Since these issues are preventing the reproducibility of published results and their comparison with novel detection solutions, we remark that it is necessary that all security researchers working in this field start to address them properly to advance the current state-of-the-art in CAN intrusion detection systems. This paper strives to solve these issues by presenting a comparison of existing works on publicly available datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的控制器局域网异常检测器比较
本文对三种不同数据集的控制器局域网(CAN)通信设计的基于机器学习的检测算法进行了比较分析。这项工作的重点是解决当前相关科学文献的局限性,这些局限性与公开可用数据集的质量有关,也与文献中提出的检测解决方案缺乏公开实施有关。由于这些问题阻碍了已发表结果的可重复性及其与新检测解决方案的比较,我们注意到,所有在该领域工作的安全研究人员都有必要开始适当地解决这些问题,以推进CAN入侵检测系统的当前最先进水平。本文通过对公开数据集上的现有作品进行比较,努力解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SixPack v2: enhancing SixPack to avoid last generation misbehavior detectors in VANETs LoCaaS: Location-Certification-as-a-Service Detecting Causality in the Presence of Byzantine Processes: There is No Holy Grail Formal models for the verification, performance evaluation, and comparison of IoT communication protocols Swarming with (Visual) Secret (Shared) Mission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1