Voxel based nonrigid image registration using local and partial volume similarity measures

D. Loeckx, F. Maes, D. Vandermeulen, P. Suetens
{"title":"Voxel based nonrigid image registration using local and partial volume similarity measures","authors":"D. Loeckx, F. Maes, D. Vandermeulen, P. Suetens","doi":"10.1109/ISBI.2010.5490339","DOIUrl":null,"url":null,"abstract":"Recently, different approaches have emerged for voxel based nonrigid image registration using local instead of global similarity measures. Benefits are more accurate registration or the ability to subdivide the global similarity in local contributions. Within this article, we provide a general method to localise similarity measures using overlapping regions. Moreover, we extend the concept of partial volume estimation, introduced for mutual information (MI), to other similarity measures. We compare local and global sum of squared differences (SSD), cross correlation (CC) and MI for different sizes of the local regions. In general, local MI gives the highest accuracy, even for image pairs of the same modality. Partial volume estimation slightly improves the accuracy for local measures; the improvement is more pronounced for label images.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, different approaches have emerged for voxel based nonrigid image registration using local instead of global similarity measures. Benefits are more accurate registration or the ability to subdivide the global similarity in local contributions. Within this article, we provide a general method to localise similarity measures using overlapping regions. Moreover, we extend the concept of partial volume estimation, introduced for mutual information (MI), to other similarity measures. We compare local and global sum of squared differences (SSD), cross correlation (CC) and MI for different sizes of the local regions. In general, local MI gives the highest accuracy, even for image pairs of the same modality. Partial volume estimation slightly improves the accuracy for local measures; the improvement is more pronounced for label images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于体素的非刚性图像配准,使用局部和部分体积相似度度量
近年来,基于体素的非刚性图像配准出现了不同的方法,使用局部而不是全局相似度度量。好处是更准确的登记或细分局部贡献的全球相似性的能力。在本文中,我们提供了一种使用重叠区域定位相似度量的通用方法。此外,我们将为互信息(MI)引入的部分体积估计的概念扩展到其他相似性度量。我们比较了局部和全局的差异平方和(SSD),相互关系(CC)和MI对于不同大小的局部区域。一般来说,局部MI给出了最高的精度,即使是相同模态的图像对。局部体积估计略微提高了局部测量的精度;对于标签图像,改进更为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1