Intelligent DTCO (iDTCO) for next generation logic path-finding

U. Kwon, T. Okagaki, Young-seok Song, Sungyeol Kim, Yohan Kim, Minkyoung Kim, A. Kim, Saetbyeol Ahn, Jihye Shin, Yonghee Park, Jongchol Kim, D. Kim, Weiyi Qi, Yang Lu, Nuo Xu, Hong-hyun Park, J. Wang, W. Choi
{"title":"Intelligent DTCO (iDTCO) for next generation logic path-finding","authors":"U. Kwon, T. Okagaki, Young-seok Song, Sungyeol Kim, Yohan Kim, Minkyoung Kim, A. Kim, Saetbyeol Ahn, Jihye Shin, Yonghee Park, Jongchol Kim, D. Kim, Weiyi Qi, Yang Lu, Nuo Xu, Hong-hyun Park, J. Wang, W. Choi","doi":"10.1109/SISPAD.2018.8551723","DOIUrl":null,"url":null,"abstract":"Intelligent design technology co-optimization (iDTCO) methodology for next generation logic architecture pathfinding and its application results are presented in this paper. There are 2 major steps in our iDTCO framework; standard cell (STC)-level iDTCO and block-level iDTCO. STC-level iDTCO, the main focus of this paper, consists of 4 major components; (1) full 3D process emulation with litho contour of standard cell (STC) layout, (2) auto-extraction of transistor compact model & parasitic RC extraction (PEX) in 3D, (3) performance-power-yield (PPY) analyzer, (4) multi-objective optimization of layout & process assumption (PA) to get best PPY. Applying our STC-level iDTCO flow to logic arch pathfinding, we could speed up our PPY analysis TAT by 5$\\sim$10 times with good accuracy of >95%.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent design technology co-optimization (iDTCO) methodology for next generation logic architecture pathfinding and its application results are presented in this paper. There are 2 major steps in our iDTCO framework; standard cell (STC)-level iDTCO and block-level iDTCO. STC-level iDTCO, the main focus of this paper, consists of 4 major components; (1) full 3D process emulation with litho contour of standard cell (STC) layout, (2) auto-extraction of transistor compact model & parasitic RC extraction (PEX) in 3D, (3) performance-power-yield (PPY) analyzer, (4) multi-objective optimization of layout & process assumption (PA) to get best PPY. Applying our STC-level iDTCO flow to logic arch pathfinding, we could speed up our PPY analysis TAT by 5$\sim$10 times with good accuracy of >95%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下一代逻辑寻径的智能DTCO (iDTCO)
介绍了下一代逻辑体系结构寻路的智能设计技术协同优化方法及其应用效果。我们的iDTCO框架有两个主要步骤;标准单元(STC)级iDTCO和块级iDTCO。本文主要研究的stc级iDTCO由4个主要组成部分组成;(1)采用标准电池(STC)布局的光刻轮廓进行全三维工艺仿真;(2)晶体管紧凑模型的自动提取与三维寄生RC提取(PEX);(3)性能功率产率(PPY)分析仪;(4)布局与工艺假设(PA)的多目标优化以获得最佳PPY。将我们的stc级iDTCO流应用于逻辑arch寻径,我们可以将我们的PPY分析TAT速度提高5$\sim$10倍,准确率>95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Channel Length Scaling Impact on NBTI in RMG Si p-FinFETs Simulation of Hot-Electron Effects with Multi-band Semiconductor Devices Statistical Variability Simulation of Novel Capacitor-less Z2FET DRAM: From Transistor to}Circuit A versatile harmonic balance method in a parallel framework Inter-band coupling in Empirical Pseudopotential Method based bandstructure calculations of group IV and III-V nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1