Managing Information Updating with Edge Computing: A Distributed and Learning Approach

Junyi He, Di Zhang, Shumeng Liu, Yuezhi Zhou, Yaoxue Zhang
{"title":"Managing Information Updating with Edge Computing: A Distributed and Learning Approach","authors":"Junyi He, Di Zhang, Shumeng Liu, Yuezhi Zhou, Yaoxue Zhang","doi":"10.1109/ICASSP49357.2023.10095129","DOIUrl":null,"url":null,"abstract":"The rapid proliferation of some real-time applications (e.g., video surveillance) has driven enormous interest in maximizing information freshness, quantified by the age of information (AoI). For some computation-intensive updates such as images or videos, the real-time update processing requires intensive resources, which edge servers can provide in mobile edge computing (MEC). In this paper, we investigate information updating scheduling with multiple users in MEC. Due to the centralized algorithms’ limitations in distributed systems where users are self-interested, we investigate an efficient distributed scheduling algorithm. We model the information updating scheduling as an uncooperative game and propose a distributed algorithm to compute the unique Nash equilibrium. Considering the unavailability of some global network information, we propose a learning algorithm where each user learns how to make decisions based on observable information in a distributed manner. Extensive evaluation results show the efficiency of the proposed algorithms.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid proliferation of some real-time applications (e.g., video surveillance) has driven enormous interest in maximizing information freshness, quantified by the age of information (AoI). For some computation-intensive updates such as images or videos, the real-time update processing requires intensive resources, which edge servers can provide in mobile edge computing (MEC). In this paper, we investigate information updating scheduling with multiple users in MEC. Due to the centralized algorithms’ limitations in distributed systems where users are self-interested, we investigate an efficient distributed scheduling algorithm. We model the information updating scheduling as an uncooperative game and propose a distributed algorithm to compute the unique Nash equilibrium. Considering the unavailability of some global network information, we propose a learning algorithm where each user learns how to make decisions based on observable information in a distributed manner. Extensive evaluation results show the efficiency of the proposed algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于边缘计算的信息更新管理:一种分布式学习方法
一些实时应用程序(例如,视频监控)的快速扩散已经推动了对信息新鲜度最大化的巨大兴趣,通过信息时代(AoI)进行量化。对于一些计算密集型的更新,如图像或视频,实时更新处理需要大量的资源,边缘服务器可以在移动边缘计算(MEC)中提供这些资源。本文研究了MEC中多用户信息更新调度问题。针对集中式调度算法在用户自利益的分布式系统中的局限性,研究了一种高效的分布式调度算法。将信息更新调度建模为非合作博弈,提出了一种计算唯一纳什均衡的分布式算法。考虑到某些全局网络信息的不可用性,我们提出了一种学习算法,其中每个用户以分布式的方式学习如何根据可观察到的信息做出决策。广泛的评估结果表明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight Machine Learning for Seizure Detection on Wearable Devices MSN-net: Multi-Scale Normality Network for Video Anomaly Detection ITER-SIS: Robust Unlimited Sampling Via Iterative Signal Sieving Streaming Multi-Channel Speech Separation with Online Time-Domain Generalized Wiener Filter MMATR: A Lightweight Approach for Multimodal Sentiment Analysis Based on Tensor Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1