Residual conductivity and Seebeck coefficient calculations in TiCo1-xCuxSb alloys

T. Stopa, J. Toboła, S. Kaprzyk
{"title":"Residual conductivity and Seebeck coefficient calculations in TiCo1-xCuxSb alloys","authors":"T. Stopa, J. Toboła, S. Kaprzyk","doi":"10.1109/ICT.2006.331298","DOIUrl":null,"url":null,"abstract":"We report results of conductivity and Seebeck coefficient calculations for TiCo1-xCuxSb alloys, as well as their comparison with experimental data. TiCoSb crystallizes in a half-Heusler crystal structure. As revealed from experimental measurements by Horyn et al., this type of structure does not change with Cu doping until x = 0.5. Moreover, lattice constant changes also very slightly and not-monotonically for 0 < x < 0.5, varying less then 0.001 nm. Therefore, we decided to use fixed lattice constant a = 0.58819 nm for all Cu concentrations. In TiCo1-xCuxSb a semiconductor-metal phase transition is observed upon even very small Cu doping. This is connected with the fact, that Fermi level in TiCoSb is located at the top of valence band. When the number of electrons in the system grows, Fermi energy crosses energy gap (which is about 1 eV) and enters conduction band. Also Seebeck coefficient increases rapidly with x from about -350 muV/K in TiCoSb to almost zero for x = 0.5, but it doesn't change the sign. All calculations were performed within Korringa-Kohn-Rostoker (KKR) method [Bansil et al., 1990 and 1999] with coherent potential approximation (CPA) [Soven, 1967] and [Kaprzyk and Bansil, 1990]","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We report results of conductivity and Seebeck coefficient calculations for TiCo1-xCuxSb alloys, as well as their comparison with experimental data. TiCoSb crystallizes in a half-Heusler crystal structure. As revealed from experimental measurements by Horyn et al., this type of structure does not change with Cu doping until x = 0.5. Moreover, lattice constant changes also very slightly and not-monotonically for 0 < x < 0.5, varying less then 0.001 nm. Therefore, we decided to use fixed lattice constant a = 0.58819 nm for all Cu concentrations. In TiCo1-xCuxSb a semiconductor-metal phase transition is observed upon even very small Cu doping. This is connected with the fact, that Fermi level in TiCoSb is located at the top of valence band. When the number of electrons in the system grows, Fermi energy crosses energy gap (which is about 1 eV) and enters conduction band. Also Seebeck coefficient increases rapidly with x from about -350 muV/K in TiCoSb to almost zero for x = 0.5, but it doesn't change the sign. All calculations were performed within Korringa-Kohn-Rostoker (KKR) method [Bansil et al., 1990 and 1999] with coherent potential approximation (CPA) [Soven, 1967] and [Kaprzyk and Bansil, 1990]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiCo1-xCuxSb合金的残余电导率和塞贝克系数计算
本文报道了TiCo1-xCuxSb合金的电导率和塞贝克系数的计算结果,并与实验数据进行了比较。TiCoSb结晶为半赫斯勒晶体结构。Horyn等人的实验测量表明,在x = 0.5之前,铜掺杂不会改变这种结构。此外,在0 < x < 0.5时,晶格常数的变化也非常微小且非单调,变化小于0.001 nm。因此,我们决定对所有Cu浓度使用固定的晶格常数a = 0.58819 nm。在TiCo1-xCuxSb中,即使非常小的Cu掺杂也能观察到半导体-金属相变。这与TiCoSb中的费米能级位于价带顶端有关。当系统中电子数增加时,费米能穿过能隙(约1 eV)进入导带。塞贝克系数也随着x的增加而迅速增加,从TiCoSb中的-350 muV/K到x = 0.5时几乎为零,但它没有改变符号。所有计算均采用Korringa-Kohn-Rostoker (KKR)方法[Bansil等人,1990和1999]和相干势近似(CPA) [Soven, 1967]和[Kaprzyk和Bansil, 1990]进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined Thermoelectric and Structure Characterizations of Patterned Nanowires FTIR Reflectivity spectra of Thermoelectric K2Sb8Se13 crystals Structural Characteristics of Bi2Te3 and Sb2Te3 films on (001) GaAs Substrates grown by MOCVD Enhanced Thermoelectric Performance of Nanostructured ZnO: A possibility of selective phonon scattering and carrier energy filtering by nanovoid structure High-temperature thermoelectric properties of Delafossite oxide CuRh1-xMgxO2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1