Inverse Sets in Pattern Recognition

A. Mikhailov, M. Karavay
{"title":"Inverse Sets in Pattern Recognition","authors":"A. Mikhailov, M. Karavay","doi":"10.1109/EWDTS.2018.8524865","DOIUrl":null,"url":null,"abstract":"No matter how efficient indexing-based Internet search engines could be, indexing or inverse representations of data, is not in the mainstream of pattern recognition. One reason for a lack of interest in indexing methods on the part of pattern recognition community is instability of results due to a use of noise-prone measurements as features, rather than key words. The paper suggests a multidimensional numerical data indexing method that opens a path to accurate indexing-based pattern recognition systems that inherit from their search engines predecessors the ability to efficiently deal with large amounts of data.","PeriodicalId":127240,"journal":{"name":"2018 IEEE East-West Design & Test Symposium (EWDTS)","volume":"375 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE East-West Design & Test Symposium (EWDTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWDTS.2018.8524865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

No matter how efficient indexing-based Internet search engines could be, indexing or inverse representations of data, is not in the mainstream of pattern recognition. One reason for a lack of interest in indexing methods on the part of pattern recognition community is instability of results due to a use of noise-prone measurements as features, rather than key words. The paper suggests a multidimensional numerical data indexing method that opens a path to accurate indexing-based pattern recognition systems that inherit from their search engines predecessors the ability to efficiently deal with large amounts of data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模式识别中的逆集
无论基于索引的互联网搜索引擎多么高效,索引或数据的逆表示都不是模式识别的主流。模式识别界对索引方法缺乏兴趣的一个原因是由于使用容易产生噪声的测量作为特征,而不是关键字,结果不稳定。本文提出了一种多维数字数据索引方法,为基于精确索引的模式识别系统开辟了一条道路,该系统继承了搜索引擎前辈高效处理大量数据的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of a Problem of the Hidden Faults in the Digital Components of Safety-Related Systens Design and Test Issues of a SOl CMOS Voltage Controlled Oscillators for Radiation Tolerant Frequency Synthesizers Methods of EVM Measurement and Calibration Algorithms for Measuring Instruments Design of Two-Valued and Multivalued Current Digital Adders Based on the Mathematical Tool of Linear Algebra System of Designing Test Programs and Modeling of the Memory Microcircuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1