{"title":"Gait production in a tensegrity based robot","authors":"C. Paul, J. Roberts, Hod Lipson, F. Cuevas","doi":"10.1109/ICAR.2005.1507415","DOIUrl":null,"url":null,"abstract":"The design of legged robots for movement has usually been based on a series of rigid links connected by actuated or passively compliant joints. However, the potential utility of tensegrity, in which form can be achieved using a disconnected set of rigid elements connected by a continuous network of tensile elements, has not been considered in the design of legged robots. This paper introduces the idea of a legged robot based on a tensegrity structure, and demonstrates that the dynamics of such structures can be utilized for locomotion. A mobile robot based on a triangular tensegrity prism is presented, which is actuated by contraction of its transverse cables. The automatic design of a controller architecture for forward locomotion is performed in simulation using a genetic algorithm which demonstrates that the structure can generate multiple effective gait patterns for forward locomotion. A real world tensegrity robot is implemented based on the simulated robot, which is shown to be capable of producing forward locomotion. The results suggest that a tensegrity structure can provide the basis for extremely lightweight and robust mobile robots","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112
Abstract
The design of legged robots for movement has usually been based on a series of rigid links connected by actuated or passively compliant joints. However, the potential utility of tensegrity, in which form can be achieved using a disconnected set of rigid elements connected by a continuous network of tensile elements, has not been considered in the design of legged robots. This paper introduces the idea of a legged robot based on a tensegrity structure, and demonstrates that the dynamics of such structures can be utilized for locomotion. A mobile robot based on a triangular tensegrity prism is presented, which is actuated by contraction of its transverse cables. The automatic design of a controller architecture for forward locomotion is performed in simulation using a genetic algorithm which demonstrates that the structure can generate multiple effective gait patterns for forward locomotion. A real world tensegrity robot is implemented based on the simulated robot, which is shown to be capable of producing forward locomotion. The results suggest that a tensegrity structure can provide the basis for extremely lightweight and robust mobile robots