Performance tuning of database systems using a context-aware approach

Asanga Nimalasena, V. Getov
{"title":"Performance tuning of database systems using a context-aware approach","authors":"Asanga Nimalasena, V. Getov","doi":"10.1109/ICCES.2014.7030936","DOIUrl":null,"url":null,"abstract":"Database system performance problems have a cascading effect into all aspects of an enterprise application. Database vendors and application developers provide guidelines, best practices and even initial database settings for good performance. But database performance tuning is not a one-off task. Database administrators have to keep a constant eye on the database performance as the tuning work carried out earlier could be invalidated due to multitude of reasons. Before engaging in a performance tuning endeavor, a database administrator must prioritize which tuning tasks to carry out first. This prioritization is done based on which tuning action would yield highest performance benefit. However, this prediction may not always be accurate. Experiment-based performance tuning methodologies have been introduced as an alternative to prediction-based performance tuning approaches. Experimenting on a representative system similar to the production one allows a database administrator to accurately gauge the performance gain for a particular tuning task. In this paper we propose a novel approach to experiment-based performance tuning with the use of a context-aware application model. Using a proof-of-concept implementation we show how it could be used to automate the detection of performance changes, experiment creation and evaluate the performance tuning outcomes for mixed workload types through database configuration parameter changes.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2014.7030936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Database system performance problems have a cascading effect into all aspects of an enterprise application. Database vendors and application developers provide guidelines, best practices and even initial database settings for good performance. But database performance tuning is not a one-off task. Database administrators have to keep a constant eye on the database performance as the tuning work carried out earlier could be invalidated due to multitude of reasons. Before engaging in a performance tuning endeavor, a database administrator must prioritize which tuning tasks to carry out first. This prioritization is done based on which tuning action would yield highest performance benefit. However, this prediction may not always be accurate. Experiment-based performance tuning methodologies have been introduced as an alternative to prediction-based performance tuning approaches. Experimenting on a representative system similar to the production one allows a database administrator to accurately gauge the performance gain for a particular tuning task. In this paper we propose a novel approach to experiment-based performance tuning with the use of a context-aware application model. Using a proof-of-concept implementation we show how it could be used to automate the detection of performance changes, experiment creation and evaluate the performance tuning outcomes for mixed workload types through database configuration parameter changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用上下文感知方法对数据库系统进行性能调优
数据库系统性能问题会对企业应用程序的各个方面产生级联效应。数据库供应商和应用程序开发人员提供指导方针、最佳实践甚至初始数据库设置,以获得良好的性能。但是数据库性能调优不是一次性的任务。数据库管理员必须时刻关注数据库性能,因为之前执行的调优工作可能由于多种原因而无效。在进行性能调优之前,数据库管理员必须优先执行哪些调优任务。此优先级是根据哪种调优操作将产生最高的性能效益来完成的。然而,这种预测可能并不总是准确的。已经引入了基于实验的性能调优方法,作为基于预测的性能调优方法的替代方案。在与生产系统类似的代表性系统上进行实验,允许数据库管理员准确地衡量特定调优任务的性能增益。在本文中,我们提出了一种使用上下文感知应用程序模型进行基于实验的性能调优的新方法。通过一个概念验证实现,我们展示了如何使用它自动检测性能变化、创建实验,并通过更改数据库配置参数来评估混合工作负载类型的性能调优结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations and performance evaluation of Real-Time Multi-core Systems An Enhanced Queries Scheduler for query processing over a cloud environment EMD thresholding and denoising inspired by wavelet technique A proposed SNOMED CT ontology-based encoding methodology for diabetes diagnosis case-base A proposed framework for robust face identification system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1