Modified Simulated Annealing Hybrid Algorithm to Solve the Traveling Salesman Problem

Eduardo Chandomí-Castellanos, E. Escobar-Gómez, Sergio F. Aguilar Marroquín-Cano, Héctor R. Hernández De León, S. Velázquez-Trujillo, Jorge A. Sarmiento-Torres, Carlos Venturino De Coss Pérez
{"title":"Modified Simulated Annealing Hybrid Algorithm to Solve the Traveling Salesman Problem","authors":"Eduardo Chandomí-Castellanos, E. Escobar-Gómez, Sergio F. Aguilar Marroquín-Cano, Héctor R. Hernández De León, S. Velázquez-Trujillo, Jorge A. Sarmiento-Torres, Carlos Venturino De Coss Pérez","doi":"10.1109/CoDIT55151.2022.9804145","DOIUrl":null,"url":null,"abstract":"This paper proposes to solve the problem of the simple Traveler Agent by applying combined heuristic methods of local search. The proposed method evaluates a random initial route, using a modified simulated annealing algorithm that seeks to improve the route's cost globally, and finally, using a 2-opt local search technique that improves the cost. Different instances of TSPLIB data are evaluated and compared with other methods. The proposed method is compared with other techniques such as Ant Colony Optimization algorithm (ACO), Neural Networks (NN), Particle Swarm Optimization (PSO), and Genetics Algorithm (GA), where results are obtained sub-optimal solution, but in shorter computational time; Validation is obtained by applying two types of statistical indices, the relative percentage error and the coefficient of variation, as well as the execution times in seconds. Finally, using the instances, a MAPE equal to 3.0353% is obtained.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9804145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes to solve the problem of the simple Traveler Agent by applying combined heuristic methods of local search. The proposed method evaluates a random initial route, using a modified simulated annealing algorithm that seeks to improve the route's cost globally, and finally, using a 2-opt local search technique that improves the cost. Different instances of TSPLIB data are evaluated and compared with other methods. The proposed method is compared with other techniques such as Ant Colony Optimization algorithm (ACO), Neural Networks (NN), Particle Swarm Optimization (PSO), and Genetics Algorithm (GA), where results are obtained sub-optimal solution, but in shorter computational time; Validation is obtained by applying two types of statistical indices, the relative percentage error and the coefficient of variation, as well as the execution times in seconds. Finally, using the instances, a MAPE equal to 3.0353% is obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解旅行商问题的改进模拟退火混合算法
本文提出了采用局部搜索的组合启发式方法来解决简单旅行代理问题。该方法利用改进的模拟退火算法对随机初始路径进行评估,力求在全局范围内提高路径成本,最后利用2-opt局部搜索技术提高成本。评估了TSPLIB数据的不同实例,并与其他方法进行了比较。将该方法与蚁群优化算法(ACO)、神经网络(NN)、粒子群优化算法(PSO)和遗传算法(GA)等方法进行了比较,结果表明该方法得到了次优解,但计算时间较短;采用相对误差百分比和变异系数两种统计指标以及以秒为单位的执行时间对算法进行了验证。最后,使用实例,得到的MAPE等于3.0353%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Human Model Parameters for the Human-Machine Control Systems Design A Dual-channel Attention Model for Optical Microscope Pollen Classification Application of Machine Learning in the producer's optimal control problem with non-stable demand Comparison Between Model-Based and Data-Based Methods for Fault Diagnosis of Railway Turnouts Improved Multi-Particle Swarm Optimization based on multi-exemplar and forgetting ability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1