Surface Chemical Analysis of Solid-Electrolyte Interphase Layer on Germanium Thin Films and the Effect of Vinylene Carbonate Electrolyte Additive

S. Jayasree, S. Nair, Dhamodaran Santhanagopalan
{"title":"Surface Chemical Analysis of Solid-Electrolyte Interphase Layer on Germanium Thin Films and the Effect of Vinylene Carbonate Electrolyte Additive","authors":"S. Jayasree, S. Nair, Dhamodaran Santhanagopalan","doi":"10.5772/intechopen.90032","DOIUrl":null,"url":null,"abstract":"Germanium thin-film anodes for Li-ion battery applications are the focus of the present work. As part of this chapter, we shall briefly review the use of germanium thin films in Li-ion batteries, and subsequently, new results pertaining to the effect of vinylene carbonate (VC) as electrolyte additive on the electrochemical performance are presented. We have used cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy to investigate the performance. Thin-film electrode performance with 0 wt. %, 5 wt. %, and 10 wt.% VC as electrolyte additive was compared to understand the role of additive’s concentration. The cell with 5 wt.% VC as electrolyte additive exhibited best performance with high specific capacity of 975 mAh/g, with a retention of 94 and 99% Coulombic efficiency at the end of 100 cycles. Ex situ surface chemical analysis of the solid-electrolyte interphase (SEI) layer has been studied in detail using X-ray photoelectron spectroscopy and correlated with the electrochemical performance. and non-doped. They prepared electrodes with different thickness of 50, 100, 200, and 400 nm. The n-doped Ge film of thickness 200 nm exhibited best life cycle among others. It showed a stable discharge capacity of 780 μ Ahcm 2 /cm over 180 cycles.","PeriodicalId":375639,"journal":{"name":"Lithium-ion Batteries - Thin Film for Energy Materials and Devices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithium-ion Batteries - Thin Film for Energy Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Germanium thin-film anodes for Li-ion battery applications are the focus of the present work. As part of this chapter, we shall briefly review the use of germanium thin films in Li-ion batteries, and subsequently, new results pertaining to the effect of vinylene carbonate (VC) as electrolyte additive on the electrochemical performance are presented. We have used cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy to investigate the performance. Thin-film electrode performance with 0 wt. %, 5 wt. %, and 10 wt.% VC as electrolyte additive was compared to understand the role of additive’s concentration. The cell with 5 wt.% VC as electrolyte additive exhibited best performance with high specific capacity of 975 mAh/g, with a retention of 94 and 99% Coulombic efficiency at the end of 100 cycles. Ex situ surface chemical analysis of the solid-electrolyte interphase (SEI) layer has been studied in detail using X-ray photoelectron spectroscopy and correlated with the electrochemical performance. and non-doped. They prepared electrodes with different thickness of 50, 100, 200, and 400 nm. The n-doped Ge film of thickness 200 nm exhibited best life cycle among others. It showed a stable discharge capacity of 780 μ Ahcm 2 /cm over 180 cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锗薄膜固-电解质界面层表面化学分析及碳酸乙烯电解质添加剂的影响
锗薄膜阳极在锂离子电池中的应用是目前研究的重点。作为本章的一部分,我们将简要回顾锗薄膜在锂离子电池中的应用,随后,介绍有关碳酸乙烯(VC)作为电解质添加剂对电化学性能影响的新结果。我们用循环伏安法、恒流充放电法和电化学阻抗法来研究其性能。比较了0 wt.%、5 wt.%和10 wt.% VC作为电解质添加剂时薄膜电极的性能,了解了添加剂浓度的作用。当电解质添加量为5 wt.% VC时,电池的性能最佳,比容量高达975 mAh/g,循环100次后库仑效率为99%,保留率为94%。利用x射线光电子能谱对固体-电解质间相(SEI)层的非原位表面化学分析进行了详细的研究,并与电化学性能进行了关联。和non-doped。他们制备了50、100、200和400纳米厚度的电极。其中,厚度为200 nm的掺氮锗薄膜的寿命周期最好。在180次循环中,放电容量稳定在780 μ Ahcm 2 /cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introductory Chapter: Lithium-Ion Batteries - Thin Film for Energy Materials and Devices Surface Chemical Analysis of Solid-Electrolyte Interphase Layer on Germanium Thin Films and the Effect of Vinylene Carbonate Electrolyte Additive Cathode Electronic Structure Impact on Lithium and Sodium Batteries Parameters Flexible Porous Carbon Nanotube Films Intercalated with Active and Functional Materials for Lithium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1