Face Recognition from Unconstrained Images: Progress with Prototypes

R. Jenkins, A. Burton, D. White
{"title":"Face Recognition from Unconstrained Images: Progress with Prototypes","authors":"R. Jenkins, A. Burton, D. White","doi":"10.1109/FGR.2006.45","DOIUrl":null,"url":null,"abstract":"Artificial face recognition systems typically do not attempt to handle very variable images. By comparison, human perceivers can recognize familiar faces over much more varied conditions. We describe a prototype face representation based on simple image-averaging. We have argued that this forms a good candidate for understanding human face perception. Here we examine the stability of these representations by asking (i) how quickly they converge; and (U) how resistant they are to contamination due to previous misidentifications. We conclude that face averages provide promising representations for use in artificial recognition","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Artificial face recognition systems typically do not attempt to handle very variable images. By comparison, human perceivers can recognize familiar faces over much more varied conditions. We describe a prototype face representation based on simple image-averaging. We have argued that this forms a good candidate for understanding human face perception. Here we examine the stability of these representations by asking (i) how quickly they converge; and (U) how resistant they are to contamination due to previous misidentifications. We conclude that face averages provide promising representations for use in artificial recognition
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自无约束图像的人脸识别:原型的进展
人工面部识别系统通常不会尝试处理非常多变的图像。相比之下,人类感知者可以在更多不同的条件下识别熟悉的面孔。我们描述了一个基于简单图像平均的原型人脸表示。我们认为,这形成了理解人类面部感知的一个很好的候选。在这里,我们通过询问(i)它们收敛的速度有多快来检验这些表示的稳定性;(U)由于之前的错误识别,它们对污染的抵抗力如何。我们得出结论,面部平均值为人工识别提供了有前途的表征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1