{"title":"Automatic Target Recognition of SAR images using Random Subspace Ensemble classifier","authors":"Zoha PourEbtehaj, D. Ramachandram","doi":"10.1109/SPC.2013.6735093","DOIUrl":null,"url":null,"abstract":"A novel framework for Automatic Target Recognition(ATR) in Synthetic Aperture Radar (SAR) imagery using Ensemble classifier is presented. A combination of Principal Component Analysis (PCA) and Non-negative Factorization (NMF) are used as features to a Random Subspace Ensemble with k-NN as base classifiers. The Random Subspace ensemble offers an elegant approach to feature selection when dealing with high dimensional feature set such as in the present case. Our approach has been benchmarked using the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset and results indicate our method outperforms other the state-of-the-art SAR ATR techniques reported in the literature.","PeriodicalId":198247,"journal":{"name":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2013.6735093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A novel framework for Automatic Target Recognition(ATR) in Synthetic Aperture Radar (SAR) imagery using Ensemble classifier is presented. A combination of Principal Component Analysis (PCA) and Non-negative Factorization (NMF) are used as features to a Random Subspace Ensemble with k-NN as base classifiers. The Random Subspace ensemble offers an elegant approach to feature selection when dealing with high dimensional feature set such as in the present case. Our approach has been benchmarked using the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset and results indicate our method outperforms other the state-of-the-art SAR ATR techniques reported in the literature.