Real-Time Halfway Domain Reconstruction of Motion and Geometry

Lucas Thies, M. Zollhöfer, Christian Richardt, C. Theobalt, G. Greiner
{"title":"Real-Time Halfway Domain Reconstruction of Motion and Geometry","authors":"Lucas Thies, M. Zollhöfer, Christian Richardt, C. Theobalt, G. Greiner","doi":"10.1109/3DV.2016.55","DOIUrl":null,"url":null,"abstract":"We present a novel approach for real-time joint reconstruction of 3D scene motion and geometry from binocular stereo videos. Our approach is based on a novel variational halfway-domain scene flow formulation, which allows us to obtain highly accurate spatiotemporal reconstructions of shape and motion. We solve the underlying optimization problem at real-time frame rates using a novel data-parallel robust non-linear optimization strategy. Fast convergence and large displacement flows are achieved by employing a novel hierarchy that stores delta flows between hierarchy levels. High performance is obtained by the introduction of a coarser warp grid that decouples the number of unknowns from the input resolution of the images. We demonstrate our approach in a live setup that is based on two commodity webcams, as well as on publicly available video data. Our extensive experiments and evaluations show that our approach produces high-quality dense reconstructions of 3D geometry and scene flow at real-time frame rates, and compares favorably to the state of the art.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a novel approach for real-time joint reconstruction of 3D scene motion and geometry from binocular stereo videos. Our approach is based on a novel variational halfway-domain scene flow formulation, which allows us to obtain highly accurate spatiotemporal reconstructions of shape and motion. We solve the underlying optimization problem at real-time frame rates using a novel data-parallel robust non-linear optimization strategy. Fast convergence and large displacement flows are achieved by employing a novel hierarchy that stores delta flows between hierarchy levels. High performance is obtained by the introduction of a coarser warp grid that decouples the number of unknowns from the input resolution of the images. We demonstrate our approach in a live setup that is based on two commodity webcams, as well as on publicly available video data. Our extensive experiments and evaluations show that our approach produces high-quality dense reconstructions of 3D geometry and scene flow at real-time frame rates, and compares favorably to the state of the art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动和几何的实时半域重建
我们提出了一种从双目立体视频中实时重建三维场景运动和几何形状的新方法。我们的方法是基于一种新颖的变分半域场景流公式,它使我们能够获得高度精确的形状和运动的时空重建。我们使用一种新颖的数据并行鲁棒非线性优化策略来解决实时帧率下的底层优化问题。通过采用一种新的层次结构,在层次之间存储三角洲流,可以实现快速收敛和大位移流。通过引入粗糙的经纱网格,将未知的数量与图像的输入分辨率解耦,从而获得高性能。我们在基于两个商品网络摄像头以及公开可用视频数据的现场设置中演示了我们的方法。我们广泛的实验和评估表明,我们的方法在实时帧率下产生高质量的3D几何和场景流的密集重建,并且与最先进的技术相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monocular, Real-Time Surface Reconstruction Using Dynamic Level of Detail Room Layout Estimation with Object and Material Attributes Information Using a Spherical Camera Real-Time Surface of Revolution Reconstruction on Dense SLAM 3D Data Acquisition and Registration Using Two Opposing Kinects Cotemporal Multi-View Video Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1