{"title":"Large-scale terahertz active arrays in silicon using highly-versatile electromagnetic structures","authors":"Cheng Wang, Zhi Hu, G. Zhang, J. Holloway, R. Han","doi":"10.1109/IEDM.2017.8268377","DOIUrl":null,"url":null,"abstract":"The high integration capability of silicon technologies, as well as the small wavelength of terahertz (THz) signals, make it possible to build a high-density, very-large-scale active THz array on a single chip. This is, however, very challenging in practice, due to the low device efficiency and large footprint of conventional circuit designs. To address these problems, we introduce a set of compact while versatile circuits, which utilize the multi-mode behaviors from structures with tight device-electromagnetic integration. These circuits have enabled large-scale (1) homogeneous arrays for high-power, collimated radiation, and (2) heterogeneous arrays for fast broadband spectral scanning. In particular, 0.1-mW power generation (20-mW effective isotropically-radiated power) at 1 THz, simultaneous transmit/receive capability, and high-parallelism molecular spectroscopy are demonstrated. New opportunities that these works bring about are also discussed.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The high integration capability of silicon technologies, as well as the small wavelength of terahertz (THz) signals, make it possible to build a high-density, very-large-scale active THz array on a single chip. This is, however, very challenging in practice, due to the low device efficiency and large footprint of conventional circuit designs. To address these problems, we introduce a set of compact while versatile circuits, which utilize the multi-mode behaviors from structures with tight device-electromagnetic integration. These circuits have enabled large-scale (1) homogeneous arrays for high-power, collimated radiation, and (2) heterogeneous arrays for fast broadband spectral scanning. In particular, 0.1-mW power generation (20-mW effective isotropically-radiated power) at 1 THz, simultaneous transmit/receive capability, and high-parallelism molecular spectroscopy are demonstrated. New opportunities that these works bring about are also discussed.