{"title":"A high sensitivity polysilicon diaphragm condenser microphone","authors":"Pang-Cheng Hsu, C. Mastrangelo, K. D. Wise","doi":"10.1109/MEMSYS.1998.659822","DOIUrl":null,"url":null,"abstract":"This paper presents the analysis, design, fabrication, and testing of a condenser microphone utilizing a thin low-stress polycrystalline silicon diaphragm suspended above a p+ perforated back plate. The microphone is fabricated using a combination of surface and bulk micromachining techniques in a single wafer process without the need of wafer bonding. The device shows sensitivities of -34 dB (ref. To 1 V/Pa) for 2 mm diaphragms with bias of 13 V and -37 dB for 2.6 mm-wide diaphragms at 10 V in good agreement with expected performance calculations.","PeriodicalId":340972,"journal":{"name":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.1998.659822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88
Abstract
This paper presents the analysis, design, fabrication, and testing of a condenser microphone utilizing a thin low-stress polycrystalline silicon diaphragm suspended above a p+ perforated back plate. The microphone is fabricated using a combination of surface and bulk micromachining techniques in a single wafer process without the need of wafer bonding. The device shows sensitivities of -34 dB (ref. To 1 V/Pa) for 2 mm diaphragms with bias of 13 V and -37 dB for 2.6 mm-wide diaphragms at 10 V in good agreement with expected performance calculations.