Eliminating Capacitive Sneak Paths in Associative Capacitive Networks based on Complementary Resistive Switches for In-Memory Computing

Tobias Ziegler, Leon Brackmann, T. Hennen, C. Bengel, S. Menzel, D. Wouters
{"title":"Eliminating Capacitive Sneak Paths in Associative Capacitive Networks based on Complementary Resistive Switches for In-Memory Computing","authors":"Tobias Ziegler, Leon Brackmann, T. Hennen, C. Bengel, S. Menzel, D. Wouters","doi":"10.1109/IMW56887.2023.10145947","DOIUrl":null,"url":null,"abstract":"Shifting computations from the central processing unit to the memory is a promising approach to lower the stress on the Von-Neumann bottleneck and to reduce the total energy consumption spend on data transfer. One promising concept for in-memory computations is the associative capacitive network introduced by Kavehei et al.. The digital information is stored in complementary resistive switches which can be read using a non-destructive read out scheme. Simulation results based on the JART VCM vlb model demonstrate the working principle of the original input encoding and the existence of capacitive sneak path currents is identified. A new input encoding is proposed in this work which not only prevents capacitive sneak paths but also improves the voltage difference between Hamming Distances (HD).","PeriodicalId":153429,"journal":{"name":"2023 IEEE International Memory Workshop (IMW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW56887.2023.10145947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shifting computations from the central processing unit to the memory is a promising approach to lower the stress on the Von-Neumann bottleneck and to reduce the total energy consumption spend on data transfer. One promising concept for in-memory computations is the associative capacitive network introduced by Kavehei et al.. The digital information is stored in complementary resistive switches which can be read using a non-destructive read out scheme. Simulation results based on the JART VCM vlb model demonstrate the working principle of the original input encoding and the existence of capacitive sneak path currents is identified. A new input encoding is proposed in this work which not only prevents capacitive sneak paths but also improves the voltage difference between Hamming Distances (HD).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于互补电阻开关的内存计算关联电容网络中电容潜行路径的消除
将计算从中央处理单元转移到存储器是一种很有前途的方法,可以降低对冯-诺伊曼瓶颈的压力,并减少数据传输的总能耗。一个很有前途的内存计算概念是由Kavehei等人介绍的联想电容网络。数字信息存储在互补电阻开关中,该开关可以使用非破坏性读出方案读取。基于JART VCM模型的仿真结果验证了原始输入编码的工作原理,并识别了电容性潜径电流的存在。本文提出了一种新的输入编码方法,既可以防止电容性潜径,又可以提高汉明距离(HD)之间的电压差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Improving Ionizing Radiation Tolerance of 3-D NAND Flash Memory 7-Bit/2Cell (X3.5), 9-Bit/2Cell (X4.5) NAND Flash Memory: Half Bit technology Memory Window in Si:HfO2 FeRAM arrays: Performance Improvement and Extrapolation at Advanced Nodes Recent Technology Insights on STT-MRAM: Structure, Materials, and Process Integration Demonstration of multilevel multiply accumulate operations for AiMC using engineered a-IGZO transistors-based 2T1C gain cell arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1