{"title":"Multitarget miss distance and its applications","authors":"J. R. Hoffman, R. Mahler","doi":"10.1109/ICIF.2002.1021144","DOIUrl":null,"url":null,"abstract":"The concept of miss distance-Euclidean, Mahalanobis, etc.-is a fundamental, far-reaching, and taken-for-granted element of the engineering theory and practice of single-sensor, single-target systems. One might expect that multisensor, multitarget information fusion theory and applications would already rest upon a similarly fundamental concept-namely, miss distance between multi-object systems (i.e., systems in which not only individual objects can vary, but their number as well). However, this has not been the case. Consequently, in this paper we introduce a comprehensive theory of distance metrics for multitarget (and, more generally, multi-object) systems. We show that this theory extends an optimal-assignment approach proposed by O. Drummond. We describe tractable computational approaches for computing such metrics, as well as some potentially far-reaching implications for applications such as sensor management.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"496 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
The concept of miss distance-Euclidean, Mahalanobis, etc.-is a fundamental, far-reaching, and taken-for-granted element of the engineering theory and practice of single-sensor, single-target systems. One might expect that multisensor, multitarget information fusion theory and applications would already rest upon a similarly fundamental concept-namely, miss distance between multi-object systems (i.e., systems in which not only individual objects can vary, but their number as well). However, this has not been the case. Consequently, in this paper we introduce a comprehensive theory of distance metrics for multitarget (and, more generally, multi-object) systems. We show that this theory extends an optimal-assignment approach proposed by O. Drummond. We describe tractable computational approaches for computing such metrics, as well as some potentially far-reaching implications for applications such as sensor management.