Hyperspectral image compression based on Tucker Decomposition and Discrete Cosine Transform

A. Karami, M. Yazdi, A. Z. Asli
{"title":"Hyperspectral image compression based on Tucker Decomposition and Discrete Cosine Transform","authors":"A. Karami, M. Yazdi, A. Z. Asli","doi":"10.1109/IPTA.2010.5586739","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient method for Hyperspectral image compression based on the Tucker Decomposition (TD) and the Three Dimensional Discrete Cosine Transform (3D-DCT) is proposed. The core idea behind our proposed technique is to apply TD to the 3D-DCT coefficients of Hyperspectral image in order to not only exploit redundancies between bands but also to use spatial correlations of every image band and therefore, as simulation results applied to real Hyperspectral images demonstrate, it leads to a remarkable compression ratio with improved quality.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, an efficient method for Hyperspectral image compression based on the Tucker Decomposition (TD) and the Three Dimensional Discrete Cosine Transform (3D-DCT) is proposed. The core idea behind our proposed technique is to apply TD to the 3D-DCT coefficients of Hyperspectral image in order to not only exploit redundancies between bands but also to use spatial correlations of every image band and therefore, as simulation results applied to real Hyperspectral images demonstrate, it leads to a remarkable compression ratio with improved quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Tucker分解和离散余弦变换的高光谱图像压缩
提出了一种基于Tucker分解(TD)和三维离散余弦变换(3D-DCT)的高效高光谱图像压缩方法。我们提出的技术背后的核心思想是将TD应用于高光谱图像的3D-DCT系数,不仅可以利用波段之间的冗余,还可以利用每个图像波段的空间相关性,因此,应用于真实高光谱图像的仿真结果表明,它可以获得显着的压缩比和改进的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1