The object recognition based on Scale-Invariant feature transform and hybrid segmentation

M. Zachariasova, R. Hudec, M. Benco, P. Kamencay
{"title":"The object recognition based on Scale-Invariant feature transform and hybrid segmentation","authors":"M. Zachariasova, R. Hudec, M. Benco, P. Kamencay","doi":"10.1109/ELEKTRO.2012.6225582","DOIUrl":null,"url":null,"abstract":"This paper deals with research in the area of image analysis. Our approach is based on hybrid segmentation and Scale-Invariant Feature Transform (SIFT) method. The main idea is to improve the process of object recognition and their classification into classes by Support Vector Machine (SVM) classifier. The fast and powerful hybrid segmentation algorithm based on Mean Shift and Believe Propagation principles is used to improve object classification. Finally, the image segmentation algorithm was integrated with SIFT descriptor. The developed method was tested on real unsegmented and segmented images.","PeriodicalId":343071,"journal":{"name":"2012 ELEKTRO","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO.2012.6225582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with research in the area of image analysis. Our approach is based on hybrid segmentation and Scale-Invariant Feature Transform (SIFT) method. The main idea is to improve the process of object recognition and their classification into classes by Support Vector Machine (SVM) classifier. The fast and powerful hybrid segmentation algorithm based on Mean Shift and Believe Propagation principles is used to improve object classification. Finally, the image segmentation algorithm was integrated with SIFT descriptor. The developed method was tested on real unsegmented and segmented images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于尺度不变特征变换和混合分割的目标识别
本文涉及图像分析领域的研究。该方法基于混合分割和尺度不变特征变换(SIFT)方法。其主要思想是改进基于支持向量机(SVM)分类器的目标识别和分类过程。采用基于Mean Shift和Believe Propagation原理的快速、强大的混合分割算法来改进目标分类。最后,将图像分割算法与SIFT描述子相结合。在真实的未分割图像和分割图像上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum transmittable data rates for Millimeter-wave fixed wireless links Propagation models for WiMAX at 3.5 GHz Impact of selected parameters on eddy current attenuation in conductive materials Determination of rail steel's phase composition by means of X-ray diffraction analysis Multiparameter symbolic sensitivity analysis of active circuits by using nullor model and modified Coates flow graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1