Improved contrastive learning with MoCo framework

Yihan Li, Qingmin Liu, Ling Zhou, Wenyi Zhao, Y. Tian, Weidong Zhang
{"title":"Improved contrastive learning with MoCo framework","authors":"Yihan Li, Qingmin Liu, Ling Zhou, Wenyi Zhao, Y. Tian, Weidong Zhang","doi":"10.1109/ICCECE58074.2023.10135455","DOIUrl":null,"url":null,"abstract":"Self-supervised learning typically suffers from lacking contrastive pairs and extracting unrepresentative vectors. To handle above mentioned challenges, this paper introduces a novel self-supervised learning framework that integrates the location-based sampling manner and a well-designed dimensionality reduction module. In the location-based sampling module, this paper embeds a multi-crop sampling paradigm into the memory bank-based framework. In the dimensionality reduction module, this paper introduces a principal component dimensionality reduction to capture the most comprehensive features. Experiments on popular datasets demonstrate the superior performance of our proposed method.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Self-supervised learning typically suffers from lacking contrastive pairs and extracting unrepresentative vectors. To handle above mentioned challenges, this paper introduces a novel self-supervised learning framework that integrates the location-based sampling manner and a well-designed dimensionality reduction module. In the location-based sampling module, this paper embeds a multi-crop sampling paradigm into the memory bank-based framework. In the dimensionality reduction module, this paper introduces a principal component dimensionality reduction to capture the most comprehensive features. Experiments on popular datasets demonstrate the superior performance of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用MoCo框架改进对比学习
自监督学习通常存在缺乏对比对和提取非代表性向量的问题。为了应对上述挑战,本文引入了一种新的自监督学习框架,该框架集成了基于位置的采样方式和精心设计的降维模块。在基于位置的采样模块中,本文将多作物采样范式嵌入到基于存储库的框架中。在降维模块中,本文引入了主成分降维,以捕获最全面的特征。在常用数据集上的实验证明了该方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter Edge and Target Detection Method Based on Central Moment Feature Adaptive short-time Fourier transform based on reinforcement learning Design and implementation of carrier aggregation and secure communication in distribution field network Power data attribution revocation searchable encrypted cloud storage Research of Intrusion Detection Based on Neural Network Optimized by Sparrow Search Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1