Estimation of structure and physical relations among multi-modal sensor variables for musculoskeletal robotic arm

Kenta Harada, Yuichi Kobayashi
{"title":"Estimation of structure and physical relations among multi-modal sensor variables for musculoskeletal robotic arm","authors":"Kenta Harada, Yuichi Kobayashi","doi":"10.1109/MFI.2017.8170378","DOIUrl":null,"url":null,"abstract":"Autonomous robots that work in the same environment as humans must operate safely and adapt to handle various tools and deal with partial malfunctions. We propose an approach for estimating the robot structure and apply this approach for building a controller of dynamic motions. The robot structure is estimated by evaluating the mutual information (MI) among the sensor variables. Variables with high values of MI are edge-connected and the controller is automatically constructed based on the estimated structure. The proposed approach can accommodate changes in the robot parameters and dynamic motions. We verify the proposed method by using a simulator of a musculoskeletal arm driven that is driven by artificial muscle for mechanical safety.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Autonomous robots that work in the same environment as humans must operate safely and adapt to handle various tools and deal with partial malfunctions. We propose an approach for estimating the robot structure and apply this approach for building a controller of dynamic motions. The robot structure is estimated by evaluating the mutual information (MI) among the sensor variables. Variables with high values of MI are edge-connected and the controller is automatically constructed based on the estimated structure. The proposed approach can accommodate changes in the robot parameters and dynamic motions. We verify the proposed method by using a simulator of a musculoskeletal arm driven that is driven by artificial muscle for mechanical safety.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌肉骨骼机械臂多模态传感器变量的结构和物理关系估计
在与人类相同的环境中工作的自主机器人必须安全操作,并适应处理各种工具和处理局部故障。我们提出了一种估计机器人结构的方法,并将此方法应用于构建动态运动控制器。通过评估传感器变量之间的互信息来估计机器人的结构。具有高MI值的变量被边缘连接,并根据估计的结构自动构造控制器。该方法可以适应机器人参数和动态运动的变化。我们通过一个由人工肌肉驱动的肌肉骨骼手臂模拟器来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep reinforcement learning algorithms for steering an underactuated ship Data analytics development of FDR (Flight Data Recorder) data for airline maintenance operations Underwater Terrain Navigation Using Standard Sea Charts and Magnetic Field Maps Musculoskeletal model of a pregnant woman considering stretched rectus abdominis and co-contraction muscle activation Compressive sensing based data collection in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1