Solving the Optimal Active–Reactive Power Dispatch Problem in Smart Grids with the C-DEEPSO Algorithm

C. Marcelino, E. Wanner, F. V. Martins, J. Pérez-Aracil, S. Jiménez-Fernández, S. Salcedo-Sanz
{"title":"Solving the Optimal Active–Reactive Power Dispatch Problem in Smart Grids with the C-DEEPSO Algorithm","authors":"C. Marcelino, E. Wanner, F. V. Martins, J. Pérez-Aracil, S. Jiménez-Fernández, S. Salcedo-Sanz","doi":"10.1109/CEC55065.2022.9870385","DOIUrl":null,"url":null,"abstract":"Optimal active–reactive power dispatch problems (OARPD) are considered large scale optimization problems with a high nonlinear complexity. Usually, in OARPD the objective is to minimize the cost of the system operation. In 2018, the IEEE PES committee proposed a competition, the “Operational planning of sustainable power systems”, in which a test bed relating the OARPD and a renewable energy generation challenge within a smart grid was proposed. In this work we consider three test scenarios proposed in that competition. Specifically, we present a hybrid meta-heuristic optimization approach applied to the OARPD, the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO), to tackle these test scenarios. Comparative results with other algorithms such as CMA-ES, EPSO, and CEEPSO indicate that C-DEEPSO shows a competitive performance when solving the OARPD problems.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal active–reactive power dispatch problems (OARPD) are considered large scale optimization problems with a high nonlinear complexity. Usually, in OARPD the objective is to minimize the cost of the system operation. In 2018, the IEEE PES committee proposed a competition, the “Operational planning of sustainable power systems”, in which a test bed relating the OARPD and a renewable energy generation challenge within a smart grid was proposed. In this work we consider three test scenarios proposed in that competition. Specifically, we present a hybrid meta-heuristic optimization approach applied to the OARPD, the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO), to tackle these test scenarios. Comparative results with other algorithms such as CMA-ES, EPSO, and CEEPSO indicate that C-DEEPSO shows a competitive performance when solving the OARPD problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用C-DEEPSO算法求解智能电网有功无功最优调度问题
最优有功无功调度问题(OARPD)被认为是具有高度非线性复杂性的大规模优化问题。通常,在OARPD中,目标是最小化系统操作的成本。2018年,IEEE PES委员会提出了一项竞赛,即“可持续电力系统的运营规划”,其中提出了一个与OARPD和智能电网内可再生能源发电挑战相关的测试平台。在这项工作中,我们考虑了该竞赛中提出的三个测试场景。具体来说,我们提出了一种应用于OARPD的混合元启发式优化方法,即典型差分进化粒子群优化(C-DEEPSO),以解决这些测试场景。与CMA-ES、EPSO和CEEPSO等其他算法的比较结果表明,C-DEEPSO在解决OARPD问题时表现出具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1