C. Marcelino, E. Wanner, F. V. Martins, J. Pérez-Aracil, S. Jiménez-Fernández, S. Salcedo-Sanz
{"title":"Solving the Optimal Active–Reactive Power Dispatch Problem in Smart Grids with the C-DEEPSO Algorithm","authors":"C. Marcelino, E. Wanner, F. V. Martins, J. Pérez-Aracil, S. Jiménez-Fernández, S. Salcedo-Sanz","doi":"10.1109/CEC55065.2022.9870385","DOIUrl":null,"url":null,"abstract":"Optimal active–reactive power dispatch problems (OARPD) are considered large scale optimization problems with a high nonlinear complexity. Usually, in OARPD the objective is to minimize the cost of the system operation. In 2018, the IEEE PES committee proposed a competition, the “Operational planning of sustainable power systems”, in which a test bed relating the OARPD and a renewable energy generation challenge within a smart grid was proposed. In this work we consider three test scenarios proposed in that competition. Specifically, we present a hybrid meta-heuristic optimization approach applied to the OARPD, the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO), to tackle these test scenarios. Comparative results with other algorithms such as CMA-ES, EPSO, and CEEPSO indicate that C-DEEPSO shows a competitive performance when solving the OARPD problems.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Optimal active–reactive power dispatch problems (OARPD) are considered large scale optimization problems with a high nonlinear complexity. Usually, in OARPD the objective is to minimize the cost of the system operation. In 2018, the IEEE PES committee proposed a competition, the “Operational planning of sustainable power systems”, in which a test bed relating the OARPD and a renewable energy generation challenge within a smart grid was proposed. In this work we consider three test scenarios proposed in that competition. Specifically, we present a hybrid meta-heuristic optimization approach applied to the OARPD, the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO), to tackle these test scenarios. Comparative results with other algorithms such as CMA-ES, EPSO, and CEEPSO indicate that C-DEEPSO shows a competitive performance when solving the OARPD problems.