A Programmable Neural-Network Inference Accelerator Based on Scalable In-Memory Computing

Hongyang Jia, Murat Ozatay, Yinqi Tang, Hossein Valavi, Rakshit Pathak, Jinseok Lee, N. Verma
{"title":"A Programmable Neural-Network Inference Accelerator Based on Scalable In-Memory Computing","authors":"Hongyang Jia, Murat Ozatay, Yinqi Tang, Hossein Valavi, Rakshit Pathak, Jinseok Lee, N. Verma","doi":"10.1109/ISSCC42613.2021.9365788","DOIUrl":null,"url":null,"abstract":"This paper presents a scalable neural-network (NN) inference accelerator in 16nm, based on an array of programmable cores employing mixed-signal In-Memory Computing (IMC), digital Near-Memory Computing (NMC), and localized buffering/control. IMC achieves high energy efficiency and throughput for matrix-vector multiplications (MVMs), which dominate NNs; but, scalability poses numerous challenges, both technologically, going to advanced nodes to maintain gains over digital architectures, and architecturally, for full execution of diverse NNs. Recent demonstrations have explored integrating IMC in programmable processors [1, 2], but have not achieved IMC efficiency and throughput for full executions. The central challenge is drastically different physical design points and associated tradeoffs incurred by IMC compared to digital engines. Namely, IMC substantially increases compute energy efficiency and HW density/parallelism, but retains the overheads of HW virtualization (state and data swapping/buffering/communication across spatial/temporal computation mappings). The demonstrated architecture is co-designed with SW-mapping algorithms (encapsulated in a custom graph compiler), to provide efficiency across a broad range of mapping strategies, to overcome these overheads.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

This paper presents a scalable neural-network (NN) inference accelerator in 16nm, based on an array of programmable cores employing mixed-signal In-Memory Computing (IMC), digital Near-Memory Computing (NMC), and localized buffering/control. IMC achieves high energy efficiency and throughput for matrix-vector multiplications (MVMs), which dominate NNs; but, scalability poses numerous challenges, both technologically, going to advanced nodes to maintain gains over digital architectures, and architecturally, for full execution of diverse NNs. Recent demonstrations have explored integrating IMC in programmable processors [1, 2], but have not achieved IMC efficiency and throughput for full executions. The central challenge is drastically different physical design points and associated tradeoffs incurred by IMC compared to digital engines. Namely, IMC substantially increases compute energy efficiency and HW density/parallelism, but retains the overheads of HW virtualization (state and data swapping/buffering/communication across spatial/temporal computation mappings). The demonstrated architecture is co-designed with SW-mapping algorithms (encapsulated in a custom graph compiler), to provide efficiency across a broad range of mapping strategies, to overcome these overheads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可扩展内存计算的可编程神经网络推理加速器
本文提出了一种可扩展的16nm神经网络推理加速器,该加速器基于一系列可编程内核,采用混合信号内存计算(IMC)、数字近内存计算(NMC)和局部缓冲/控制。IMC实现了主导神经网络的矩阵向量乘法(mvm)的高能量效率和吞吐量;但是,可扩展性带来了许多挑战,无论是在技术上,走向先进的节点以保持对数字架构的优势,还是在架构上,为了全面执行各种神经网络。最近的演示已经探索了将IMC集成到可编程处理器中[1,2],但尚未实现完整执行的IMC效率和吞吐量。与数字引擎相比,IMC面临的主要挑战是物理设计点和相关权衡的差异。也就是说,IMC大大提高了计算能源效率和硬件密度/并行性,但保留了硬件虚拟化的开销(跨空间/时间计算映射的状态和数据交换/缓冲/通信)。演示的体系结构是与sw映射算法(封装在自定义图形编译器中)共同设计的,以便在广泛的映射策略中提供效率,以克服这些开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10.6 A 12b 16GS/s RF-Sampling Capacitive DAC for Multi-Band Soft-Radio Base-Station Applications with On-Chip Transmission-Line Matching Network in 16nm FinFET A 0.021mm2 PVT-Aware Digital-Flow-Compatible Adaptive Back-Biasing Regulator with Scalable Drivers Achieving 450% Frequency Boosting and 30% Power Reduction in 22nm FDSOI Technology 8.1 A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS 14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver ISSCC 2021 Index to Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1