Mining probabilistic models learned by EDAs in the optimization of multi-objective problems

Roberto Santana, C. Bielza, J. A. Lozano, P. Larrañaga
{"title":"Mining probabilistic models learned by EDAs in the optimization of multi-objective problems","authors":"Roberto Santana, C. Bielza, J. A. Lozano, P. Larrañaga","doi":"10.1145/1569901.1569963","DOIUrl":null,"url":null,"abstract":"One of the uses of the probabilistic models learned by estimation of distribution algorithms is to reveal previous unknown information about the problem structure. In this paper we investigate the mapping between the problem structure and the dependencies captured in the probabilistic models learned by EDAs for a set of multi-objective satisfiability problems. We present and discuss the application of different data mining and visualization techniques for processing and visualizing relevant information from the structure of the learned probabilistic models. We show that also in the case of multi-objective optimization problems, some features of the original problem structure can be translated to the probabilistic models and unveiled by using algorithms that mine the model structures.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1696 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

One of the uses of the probabilistic models learned by estimation of distribution algorithms is to reveal previous unknown information about the problem structure. In this paper we investigate the mapping between the problem structure and the dependencies captured in the probabilistic models learned by EDAs for a set of multi-objective satisfiability problems. We present and discuss the application of different data mining and visualization techniques for processing and visualizing relevant information from the structure of the learned probabilistic models. We show that also in the case of multi-objective optimization problems, some features of the original problem structure can be translated to the probabilistic models and unveiled by using algorithms that mine the model structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标问题优化中eda学习的概率模型挖掘
通过分布估计算法学习到的概率模型的用途之一是揭示先前关于问题结构的未知信息。本文研究了一组多目标可满足性问题的eda学习概率模型中捕获的问题结构与依赖关系之间的映射关系。我们提出并讨论了不同的数据挖掘和可视化技术的应用,用于处理和可视化来自学习概率模型结构的相关信息。我们还表明,在多目标优化问题的情况下,原始问题结构的一些特征可以转化为概率模型,并通过使用挖掘模型结构的算法来揭示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1