A new composite-adaptive algorithm with reduced computational complexity

I. Nakanishi, T. Yamamoto, Y. Fukui
{"title":"A new composite-adaptive algorithm with reduced computational complexity","authors":"I. Nakanishi, T. Yamamoto, Y. Fukui","doi":"10.1109/APCCAS.1994.514577","DOIUrl":null,"url":null,"abstract":"In the IA and HA algorithms, the convergence factors are updated every iteration, producing an increase in the number of operations. We propose a new composite-adaptive algorithm in which the IA and HA algorithms are complementarily used for a reduction in the number of operations. In particular, we apply the thinned-out method to the IA algorithm in which the convergence factors are updated only once a block. The results of the computer simulations for system identification show that the proposed algorithm works successfully.","PeriodicalId":231368,"journal":{"name":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.1994.514577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the IA and HA algorithms, the convergence factors are updated every iteration, producing an increase in the number of operations. We propose a new composite-adaptive algorithm in which the IA and HA algorithms are complementarily used for a reduction in the number of operations. In particular, we apply the thinned-out method to the IA algorithm in which the convergence factors are updated only once a block. The results of the computer simulations for system identification show that the proposed algorithm works successfully.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种降低计算复杂度的复合自适应算法
在IA和HA算法中,每次迭代都会更新收敛因子,从而导致操作次数的增加。我们提出了一种新的复合自适应算法,其中IA和HA算法互补使用,以减少操作次数。特别地,我们将稀疏化方法应用于IA算法,其中收敛因子仅在一个块中更新一次。系统辨识的计算机仿真结果表明,该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Area-time optimal digital BiCMOS carry look-ahead adder Hierarchical circuit optimization for analog LSIs using device model refining Decomposition-based 2-D variable digital filter design Artificial neural networks-learning and generalization Nonlinear gradient-based edge detection algorithms in the telesign system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1