Representing appearance and pre-filtering subpixel data in sparse voxel octrees

E. Heitz, Fabrice Neyret
{"title":"Representing appearance and pre-filtering subpixel data in sparse voxel octrees","authors":"E. Heitz, Fabrice Neyret","doi":"10.2312/EGGH/HPG12/125-134","DOIUrl":null,"url":null,"abstract":"Sparse Voxel Octrees (SVOs) represent efficiently complex geometry on current GPUs. Despite the fact that LoDs come naturally with octrees, interpolating and filtering SVOs are still issues in current approaches.\n In this paper, we propose a representation for the appearance of a detailed surface with associated attributes stored within a voxel octree. We store macro- and micro-descriptors of the surface shape and associated attributes in each voxel. We represent the surface macroscopically with a signed distance field and we encode subvoxel microdetails with Gaussian descriptors of the surface and attributes within the voxel. Our voxels form a continuous field interpolated through space and scales, through which we cast conic rays. Within the ray marching steps, we compute the occlusion distribution produced by the macro-surface inside a pixel footprint, we use the microdescriptors to reconstruct light- and view-dependent shading, and we combine fragments in an A-buffer way. Our representation efficiently accounts for various subpixel effects. It can be continuously interpolated and filtered, it is scalable, and it allows for efficient depth-of-field. We illustrate the quality of these various effects by displaying surfaces at different scales, and we show that the timings per pixel are scale-independent.","PeriodicalId":294868,"journal":{"name":"EGGH-HPG'12","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EGGH-HPG'12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGGH/HPG12/125-134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Sparse Voxel Octrees (SVOs) represent efficiently complex geometry on current GPUs. Despite the fact that LoDs come naturally with octrees, interpolating and filtering SVOs are still issues in current approaches. In this paper, we propose a representation for the appearance of a detailed surface with associated attributes stored within a voxel octree. We store macro- and micro-descriptors of the surface shape and associated attributes in each voxel. We represent the surface macroscopically with a signed distance field and we encode subvoxel microdetails with Gaussian descriptors of the surface and attributes within the voxel. Our voxels form a continuous field interpolated through space and scales, through which we cast conic rays. Within the ray marching steps, we compute the occlusion distribution produced by the macro-surface inside a pixel footprint, we use the microdescriptors to reconstruct light- and view-dependent shading, and we combine fragments in an A-buffer way. Our representation efficiently accounts for various subpixel effects. It can be continuously interpolated and filtered, it is scalable, and it allows for efficient depth-of-field. We illustrate the quality of these various effects by displaying surfaces at different scales, and we show that the timings per pixel are scale-independent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在稀疏体素八叉树中表示外观和预滤波亚像素数据
稀疏体素八叉树(SVOs)在当前gpu上高效地表示复杂的几何结构。尽管lod与八叉树自然结合,但在目前的方法中,插值和过滤svo仍然是一个问题。在本文中,我们提出了一种详细表面的外观表示,并将相关属性存储在体素八叉树中。我们在每个体素中存储表面形状和相关属性的宏观和微观描述符。我们用带符号的距离场来宏观地表示表面,并使用表面的高斯描述符和体素内的属性来编码亚体素微细节。我们的体素形成了一个通过空间和尺度插值的连续场,通过它我们投射出圆锥射线。在光线行进步骤中,我们计算由像素足迹内的宏观表面产生的遮挡分布,我们使用微描述符来重建依赖于光和视图的阴影,并且我们以a缓冲的方式组合碎片。我们的表示有效地解释了各种亚像素效应。它可以连续插值和滤波,它是可扩展的,它允许有效的景深。我们通过显示不同尺度的表面来说明这些不同效果的质量,并且我们表明每个像素的时间与尺度无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm and VLSI architecture for real-time 1080p60 video retargeting Maximizing parallelism in the construction of BVHs, octrees, and k-d trees kANN on the GPU with shifted sorting Reducing aliasing artifacts through resampling Design and novel uses of higher-dimensional rasterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1