Classification of cardiac rhythm based on heart rate dynamics

M. Carrara, L. Carozzi, S. Cerutti, M. Ferrario, D. Lake, J. Moorman
{"title":"Classification of cardiac rhythm based on heart rate dynamics","authors":"M. Carrara, L. Carozzi, S. Cerutti, M. Ferrario, D. Lake, J. Moorman","doi":"10.1109/ESGCO.2014.6847534","DOIUrl":null,"url":null,"abstract":"Cardiac rhythm classification is usually achieved using the raw electrocardiogram signal (EKG), which is not always available. By means of dynamical measures we developed a RR based classifier which is able to distinguish normal sinus rhythm (NSR), atrial fibrillation (AF) and sinus rhythm with ectopy with an accuracy of 99%, 81% and 77%, respectively, using 10-minute segments. The classifier was built on the University of Virginia (UVa) Holter database.","PeriodicalId":385389,"journal":{"name":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESGCO.2014.6847534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cardiac rhythm classification is usually achieved using the raw electrocardiogram signal (EKG), which is not always available. By means of dynamical measures we developed a RR based classifier which is able to distinguish normal sinus rhythm (NSR), atrial fibrillation (AF) and sinus rhythm with ectopy with an accuracy of 99%, 81% and 77%, respectively, using 10-minute segments. The classifier was built on the University of Virginia (UVa) Holter database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于心率动力学的心律分类
心律分类通常使用原始的心电图信号(EKG)来实现,这并不总是可用的。通过动态测量,我们开发了一个基于RR的分类器,它能够区分正常窦性心律(NSR),心房颤动(AF)和窦性心律与异位,准确率分别为99%,81%和77%,使用10分钟的片段。分类器建立在弗吉尼亚大学(UVa) Holter数据库上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MuTE: A new Matlab toolbox for estimating the multivariate Transfer entropy in physiological variability series Relationship between entropy and symbolic analysis indices of heart rate variability in patients with coronary artery disease with and without diabetes mellitus The analysis of linear/nonlinear coupling between heart rate and QT intervals Binary Symbolic Dynamics of Fetal Heart Rate Reflects Individual Gestational Development Study of electrogram organization and synchronization in paroxysmal and persistent/permanent atrial fibrillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1