Memory-guided exploration in reinforcement learning

J. Carroll, T. Peterson, N. Owens
{"title":"Memory-guided exploration in reinforcement learning","authors":"J. Carroll, T. Peterson, N. Owens","doi":"10.1109/IJCNN.2001.939497","DOIUrl":null,"url":null,"abstract":"We focus on the task transfer in reinforcement learning and specifically in Q-learning. There are three main model free methods for performing task transfer in Q-learning: direct transfer, soft transfer and memory-guided exploration. In direct transfer, the Q-values from a previous task are used to initialize the Q-values of the next task. The soft transfer initializes the Q-values of the new task with a weighted average of the standard initialization value and the Q-values of the previous task. In memory-guided exploration the Q-values of previous tasks are used as a guide in the initial exploration of the agent. The weight that the agent gives to its past experience decreases over time. We explore stability issues related to the off-policy nature of memory-guided exploration and compare memory-guided exploration to soft transfer and direct transfer in three different environments.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We focus on the task transfer in reinforcement learning and specifically in Q-learning. There are three main model free methods for performing task transfer in Q-learning: direct transfer, soft transfer and memory-guided exploration. In direct transfer, the Q-values from a previous task are used to initialize the Q-values of the next task. The soft transfer initializes the Q-values of the new task with a weighted average of the standard initialization value and the Q-values of the previous task. In memory-guided exploration the Q-values of previous tasks are used as a guide in the initial exploration of the agent. The weight that the agent gives to its past experience decreases over time. We explore stability issues related to the off-policy nature of memory-guided exploration and compare memory-guided exploration to soft transfer and direct transfer in three different environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
记忆引导下的强化学习探索
我们主要研究强化学习中的任务迁移,特别是q学习中的任务迁移。在q学习中,主要有三种无模型的任务迁移方法:直接迁移、软迁移和记忆引导探索。在直接传输中,前一个任务的q值被用来初始化下一个任务的q值。软迁移在初始化新任务时,将标准初始值与前一个任务的q值进行加权平均。在记忆引导探索中,使用先前任务的q值作为智能体初始探索的指南。代理给予其过去经验的权重随着时间的推移而减少。我们探讨了与内存引导探索的非策略性质相关的稳定性问题,并将内存引导探索与三种不同环境下的软传输和直接传输进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1