Maintenance of Genome Stability by Ubiquitination of DNA Repair Proteins in Mammalian Development and Disease

M. Shimada
{"title":"Maintenance of Genome Stability by Ubiquitination of DNA Repair Proteins in Mammalian Development and Disease","authors":"M. Shimada","doi":"10.5772/INTECHOPEN.79244","DOIUrl":null,"url":null,"abstract":"To maintain genome DNA, DNA repair machinery has been developed in cellular life cycle. Multiple DNA repair pathways such as base excision repair, nucleotide excision repair, DNA cross link damage repair, DNA single strand break repair and DNA double strand break repair including nonhomologous end joining and homologous recombination are regulated by protein signal cascade. Because of limited gene number, protein posttranslational modification signal has advantage to control cell dynamics during development and senescence. This chapter focuses on how DNA repair proteins molecular modification including phosphorylation and ubiquitination contribute to genome stability pathway during mammalian development and disease.","PeriodicalId":344707,"journal":{"name":"Ubiquitination Governing DNA Repair - Implications in Health and Disease","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ubiquitination Governing DNA Repair - Implications in Health and Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To maintain genome DNA, DNA repair machinery has been developed in cellular life cycle. Multiple DNA repair pathways such as base excision repair, nucleotide excision repair, DNA cross link damage repair, DNA single strand break repair and DNA double strand break repair including nonhomologous end joining and homologous recombination are regulated by protein signal cascade. Because of limited gene number, protein posttranslational modification signal has advantage to control cell dynamics during development and senescence. This chapter focuses on how DNA repair proteins molecular modification including phosphorylation and ubiquitination contribute to genome stability pathway during mammalian development and disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哺乳动物发育和疾病中DNA修复蛋白泛素化对基因组稳定性的维持
为了维持基因组DNA, DNA修复机制在细胞生命周期中得到发展。包括非同源末端连接和同源重组在内的碱基切除修复、核苷酸切除修复、DNA交联损伤修复、DNA单链断裂修复和DNA双链断裂修复等多种DNA修复途径均受蛋白质信号级联调控。由于基因数量有限,蛋白质翻译后修饰信号在细胞发育和衰老过程中具有控制细胞动力学的优势。本章重点介绍了在哺乳动物发育和疾病过程中,DNA修复蛋白的分子修饰,包括磷酸化和泛素化是如何参与基因组稳定途径的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interlace between Chromatin Structure, DNA Repair and Ubiquitination Ubiquitin and Fanconi Anemia Maintenance of Genome Stability by Ubiquitination of DNA Repair Proteins in Mammalian Development and Disease Ubiquitination and DNA Repair in Multiple Myeloma Review of the Ubiquitin Role in DNA Repair and Tumorigenesis, with Emphasis in Breast Cancer Treatment; Current Data and Future Options
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1