Genetically optimized extreme learning machine

Tiago Matias, R. Araújo, C. H. Antunes, D. Gabriel
{"title":"Genetically optimized extreme learning machine","authors":"Tiago Matias, R. Araújo, C. H. Antunes, D. Gabriel","doi":"10.1109/ETFA.2013.6647975","DOIUrl":null,"url":null,"abstract":"This paper proposes a learning algorithm for single-hidden layer feedforward neural networks (SLFN) called genetically optimized extreme learning machine (GO-ELM). In the GO-ELM, the structure and the parameters of the SLFN are optimized by a genetic algorithm (GA). The output weights, like in the batch ELM, are obtained by a least squares algorithm, but using Tikhonov's regularization in order to improve the SLFN performance in the presence of noisy data. The GA is used to tune the set of input variables, the hidden-layer configuration and bias, the input weights and the Tikhonov's regularization factor. The proposed method was applied and compared with four other methods over five benchmark problems available in a public repository. Besides it was applied in the estimation of the temperature at the burning zone of a real cement kiln plant.","PeriodicalId":106678,"journal":{"name":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2013.6647975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper proposes a learning algorithm for single-hidden layer feedforward neural networks (SLFN) called genetically optimized extreme learning machine (GO-ELM). In the GO-ELM, the structure and the parameters of the SLFN are optimized by a genetic algorithm (GA). The output weights, like in the batch ELM, are obtained by a least squares algorithm, but using Tikhonov's regularization in order to improve the SLFN performance in the presence of noisy data. The GA is used to tune the set of input variables, the hidden-layer configuration and bias, the input weights and the Tikhonov's regularization factor. The proposed method was applied and compared with four other methods over five benchmark problems available in a public repository. Besides it was applied in the estimation of the temperature at the burning zone of a real cement kiln plant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因优化的极限学习机
本文提出了一种用于单隐层前馈神经网络(SLFN)的学习算法,称为遗传优化极限学习机(GO-ELM)。在GO-ELM中,采用遗传算法对SLFN的结构和参数进行了优化。与批处理ELM中一样,输出权值由最小二乘算法获得,但为了提高SLFN在存在噪声数据时的性能,使用了Tikhonov正则化算法。遗传算法用于调整输入变量集、隐藏层配置和偏置、输入权重和Tikhonov正则化因子。将该方法应用于公共存储库中的五个基准问题,并与其他四种方法进行了比较。并将其应用于实际水泥窑厂燃烧区温度的估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPRS: Production skills and their relation to product, process, and resource A component-based software architecture for control and simulation of robotic manipulators Fault diagnosis of a production and distribution system with Petri nets Interoperability analysis: General concepts for an axiomatic approach Semantic alarm correlation based on ontologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1