Accenting unknown words in a specialized language

Pierre Zweigenbaum, N. Grabar
{"title":"Accenting unknown words in a specialized language","authors":"Pierre Zweigenbaum, N. Grabar","doi":"10.3115/1118149.1118153","DOIUrl":null,"url":null,"abstract":"We propose two internal methods for accenting unknown words, which both learn on a reference set of accented words the contexts of occurrence of the various accented forms of a given letter. One method is adapted from POS tagging, the other is based on finite state transducers.We show experimental results for letter e on the French version of the Medical Subject Headings thesaurus. With the best training set, the tagging method obtains a precision-recall breakeven point of 84.2±4.4% and the transducer method 83.8±4.5% (with a baseline at 64%) for the unknown words that contain this letter. A consensus combination of both increases precision to 92.0±3.7% with a recall of 75%. We perform an error analysis and discuss further steps that might help improve over the current performance.","PeriodicalId":339993,"journal":{"name":"ACL Workshop on Natural Language Processing in the Biomedical Domain","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACL Workshop on Natural Language Processing in the Biomedical Domain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118149.1118153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose two internal methods for accenting unknown words, which both learn on a reference set of accented words the contexts of occurrence of the various accented forms of a given letter. One method is adapted from POS tagging, the other is based on finite state transducers.We show experimental results for letter e on the French version of the Medical Subject Headings thesaurus. With the best training set, the tagging method obtains a precision-recall breakeven point of 84.2±4.4% and the transducer method 83.8±4.5% (with a baseline at 64%) for the unknown words that contain this letter. A consensus combination of both increases precision to 92.0±3.7% with a recall of 75%. We perform an error analysis and discuss further steps that might help improve over the current performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重读一种特殊语言中不认识的单词
我们提出了两种重读未知单词的内部方法,这两种方法都是在重读单词的参考集上学习给定字母的各种重读形式的出现上下文。一种方法是基于词性标注,另一种是基于有限状态传感器。我们在法语版医学主题词词典上展示字母e的实验结果。在最佳训练集下,标注法对包含该字母的未知单词的查全率盈亏平衡点为84.2±4.4%,换能器法为83.8±4.5%(基线为64%)。两者的一致性组合将精度提高到92.0±3.7%,召回率为75%。我们执行错误分析,并讨论可能有助于改进当前性能的进一步步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MPLUS: a probabilistic medical language understanding system Tuning support vector machines for biomedical named entity recognition Biomedical text retrieval in languages with a complex morphology Utilizing text mining results: The Pasta Web System Contrast and variability in gene names
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1