Dynamic morphology-based characterization of stem cells enabled by texture-based pattern recognition from phase-contrast images

M. Maddah, K. Loewke
{"title":"Dynamic morphology-based characterization of stem cells enabled by texture-based pattern recognition from phase-contrast images","authors":"M. Maddah, K. Loewke","doi":"10.1109/ISBI.2014.6867813","DOIUrl":null,"url":null,"abstract":"The increased use of stem cells to study disease states in vitro has created a need for tools that provide automated, non-invasive, and objective characterization of cell cultures. In this work, we address this need by developing a novel framework for stem cell assessment using time-lapse phase-contrast microscopy and automated texture-based analysis of images. We capture and quantify morphological changes during stem cell colony growth by segmenting each image of the time-lapse sequence into five distinct classes of cells. We apply our automated classification to enable non-invasive estimation of cell doubling time, and demonstrate applications of the presented framework for quantitative assessment of cell culture conditions.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The increased use of stem cells to study disease states in vitro has created a need for tools that provide automated, non-invasive, and objective characterization of cell cultures. In this work, we address this need by developing a novel framework for stem cell assessment using time-lapse phase-contrast microscopy and automated texture-based analysis of images. We capture and quantify morphological changes during stem cell colony growth by segmenting each image of the time-lapse sequence into five distinct classes of cells. We apply our automated classification to enable non-invasive estimation of cell doubling time, and demonstrate applications of the presented framework for quantitative assessment of cell culture conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纹理的模式识别从相衬图像实现干细胞的动态形态学表征
越来越多地使用干细胞在体外研究疾病状态,产生了对提供细胞培养自动化、非侵入性和客观表征的工具的需求。在这项工作中,我们通过开发一种使用延时相衬显微镜和基于图像纹理的自动分析的干细胞评估的新框架来解决这一需求。我们捕获和量化干细胞集落生长过程中的形态学变化,通过将每个图像的延时序列分割成五个不同的细胞类别。我们应用我们的自动分类来实现细胞倍增时间的非侵入性估计,并演示了所提出的细胞培养条件定量评估框架的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1