The Role of the Mechanical Speed Frequency on the Induction Motor Fault Detection via the Stray Flux

K. Gyftakis, P. Panagiotou, Sang Bin Lee
{"title":"The Role of the Mechanical Speed Frequency on the Induction Motor Fault Detection via the Stray Flux","authors":"K. Gyftakis, P. Panagiotou, Sang Bin Lee","doi":"10.1109/DEMPED.2019.8864863","DOIUrl":null,"url":null,"abstract":"Lately, the monitoring and analysis of the induction motor stray flux has been a modern trend and significant research work has been accomplished. Most papers have focused on the monitoring of rotor electrical faults around the fundamental stray flux signature, imitating in this way the traditional Motor Current Signature Analysis (MCSA). However, more significant fault related harmonics exist at other frequencies and most significantly around the mechanical frequency. The existence of the mechanical frequency in the stator current is still the best signature for detection of the mixed rotor eccentricity fault. Even healthy motors present this harmonic due to some low level inherent eccentricity. Despite that, it will be shown for the first time in this paper, with extensive Finite Element Analysis (FEA) and experimental testing, that the mechanical frequency associated harmonics in the stray flux can be purely rotor electrical fault related and completely independent from any rotor eccentricity and rotor imbalance. This makes this specific harmonic unreliable for any rotor fault diagnosis although can be a good indicator of rotor electrical faults at low slip operation. Finally, the sidebands of the mechanical frequency harmonics appear to be very sensitive to the broken rotor bar fault while quite immune to the number of the rotor bars.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Lately, the monitoring and analysis of the induction motor stray flux has been a modern trend and significant research work has been accomplished. Most papers have focused on the monitoring of rotor electrical faults around the fundamental stray flux signature, imitating in this way the traditional Motor Current Signature Analysis (MCSA). However, more significant fault related harmonics exist at other frequencies and most significantly around the mechanical frequency. The existence of the mechanical frequency in the stator current is still the best signature for detection of the mixed rotor eccentricity fault. Even healthy motors present this harmonic due to some low level inherent eccentricity. Despite that, it will be shown for the first time in this paper, with extensive Finite Element Analysis (FEA) and experimental testing, that the mechanical frequency associated harmonics in the stray flux can be purely rotor electrical fault related and completely independent from any rotor eccentricity and rotor imbalance. This makes this specific harmonic unreliable for any rotor fault diagnosis although can be a good indicator of rotor electrical faults at low slip operation. Finally, the sidebands of the mechanical frequency harmonics appear to be very sensitive to the broken rotor bar fault while quite immune to the number of the rotor bars.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机械调速频率对通过杂散磁通量检测感应电机故障的作用
近年来,对异步电动机杂散磁链的监测与分析已成为一个现代趋势,并取得了重要的研究成果。大多数论文都是模仿传统的电机电流特征分析(MCSA),围绕基本杂散磁通特征对转子电气故障进行监测。然而,在其他频率存在更显著的故障相关谐波,在机械频率附近最为显著。定子电流中机械频率的存在仍然是检测混合型转子偏心故障的最佳特征。即使是健康的电机,由于一些低水平的固有偏心,也会出现这种谐波。尽管如此,本文将首次通过广泛的有限元分析(FEA)和实验测试表明,杂散磁通中的机械频率相关谐波可以纯粹与转子电气故障相关,完全独立于任何转子偏心和转子不平衡。这使得这个特定的谐波不可靠的任何转子故障诊断,虽然可以是一个很好的指示器转子电气故障在低滑差运行。最后,机械频率谐波的边带对断条故障表现出非常敏感的特性,而对断条数具有相当的免疫力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rotating HF signal injection method improvement based on robust phase-shift estimator for self-sensing control of IPMSM Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors Optimization of magnetic flux paths in transverse flux machines through the use of iron wire wound materials A Survey of Multi-Sensor Systems for Online Fault Detection of Electric Machines On-line Transmission Line Fault Classification using Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1