Influence of zero sequence impedances of station auxiliary transformers on equipment performance under open-phase faults

Abdelrahman A. Karrar, Elamin Mohamed, M. Ahmed, Wafa Elballa, M. Kamel, M. Bowman, Tamatha A. Womack, Preston Cooper, A. Eltom
{"title":"Influence of zero sequence impedances of station auxiliary transformers on equipment performance under open-phase faults","authors":"Abdelrahman A. Karrar, Elamin Mohamed, M. Ahmed, Wafa Elballa, M. Kamel, M. Bowman, Tamatha A. Womack, Preston Cooper, A. Eltom","doi":"10.1109/PESGM.2016.7742018","DOIUrl":null,"url":null,"abstract":"Primary open-phase faults on station auxiliary transformers (SATs) are characterized by the presence of voltage unbalance at the auxiliary equipment level that could lead to protective device tripping, increased motor acceleration times, overheating or failure to start critical safety loads, particularly in the nuclear power industry. The transformer primary to ground zero sequence impedance has a profound impact on the voltage balance on the secondary (equipment) level but its effects not been fully analyzed in the context of nuclear power plant operation. This study investigates the influence of zero sequence impedance to ground as seen from the transformer primary terminals during an open-phase condition on the performance of nuclear plant auxiliary equipment, in particular the effect on large motor starting and running performance. Dynamic models for the motors were employed and adapted to the sequence network representing the overall system. The resulting system was simulated for a number of open-phase conditions using transformer characteristics representative of the SATs encountered in the nuclear power industry. It was revealed that a lower value of this impedance has a beneficial effect on motor acceleration time and voltage balance for both starting and steady state conditions. The influence of neighboring transformers with a path to ground was also investigated and found to serve towards further improvement of performance.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7742018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Primary open-phase faults on station auxiliary transformers (SATs) are characterized by the presence of voltage unbalance at the auxiliary equipment level that could lead to protective device tripping, increased motor acceleration times, overheating or failure to start critical safety loads, particularly in the nuclear power industry. The transformer primary to ground zero sequence impedance has a profound impact on the voltage balance on the secondary (equipment) level but its effects not been fully analyzed in the context of nuclear power plant operation. This study investigates the influence of zero sequence impedance to ground as seen from the transformer primary terminals during an open-phase condition on the performance of nuclear plant auxiliary equipment, in particular the effect on large motor starting and running performance. Dynamic models for the motors were employed and adapted to the sequence network representing the overall system. The resulting system was simulated for a number of open-phase conditions using transformer characteristics representative of the SATs encountered in the nuclear power industry. It was revealed that a lower value of this impedance has a beneficial effect on motor acceleration time and voltage balance for both starting and steady state conditions. The influence of neighboring transformers with a path to ground was also investigated and found to serve towards further improvement of performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开相故障下电站辅助变压器零序阻抗对设备性能的影响
电站辅助变压器(SATs)的一次开相故障的特点是在辅助设备水平上存在电压不平衡,这可能导致保护装置跳闸,电机加速时间增加,过热或无法启动关键安全负载,特别是在核电工业中。变压器一次对地零序阻抗对二次(设备)级电压平衡有着深刻的影响,但在核电站运行中其影响尚未得到充分的分析。本研究研究了在开相状态下,从变压器一次端观察到的对地零序阻抗对核电站辅助设备性能的影响,特别是对大型电动机启动和运行性能的影响。采用了电机的动态模型,并使其适应于代表整个系统的序列网络。所得到的系统在许多开相条件下进行了模拟,使用了代表核动力工业中遇到的SATs的变压器特性。结果表明,在起动和稳态条件下,较低的阻抗值有利于电机的加速时间和电压平衡。还研究了相邻变压器对地的影响,发现这有助于进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A laboratory experiment of single machine synchronous islanding using PMUs and Raspberry Pi — A platform for multi-machine islanding Distributed vs. concentrated rapid frequency response provision in future great britain system Analysis of IEEE C37.118 and IEC 61850-90-5 synchrophasor communication frameworks A Review of probabilistic methods for defining reserve requirements DC fault protection strategy considering DC network partition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1