Evolutionary Real-world Item Stock Allocation for Japanese Electric Commerce

Yasuyuki Mitsui, Y. Yamakoshi, Hiroyuki Sato
{"title":"Evolutionary Real-world Item Stock Allocation for Japanese Electric Commerce","authors":"Yasuyuki Mitsui, Y. Yamakoshi, Hiroyuki Sato","doi":"10.1109/CEC55065.2022.9870390","DOIUrl":null,"url":null,"abstract":"This work addresses a real-world item stock allocation using evolutionary optimization for Japanese electric-commerce. We use the actual data of items to be ordered, existing warehouses, and order records from customers. The target area is all over Japan. The task is to find the optimal distribution of one thousand items to eight warehouses. The problem has two objectives: minimizing the total shipping cost and minimizing the average number of stocked warehouses. The problem also has constraints, including the warehouse capacities and the maximum possible number of shipping from each warehouse. Since the commonly used uniform crossover tends to be destructive in this problem, we propose four crossovers for the problem: the item, the warehouse, the item uniform, the warehouse uniform crossovers. Experimental results show that the proposed item crossover is suited to solve this problem, and the obtained item stock allocations can significantly reduce shipping and stocking costs compared with a human-made allocation.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses a real-world item stock allocation using evolutionary optimization for Japanese electric-commerce. We use the actual data of items to be ordered, existing warehouses, and order records from customers. The target area is all over Japan. The task is to find the optimal distribution of one thousand items to eight warehouses. The problem has two objectives: minimizing the total shipping cost and minimizing the average number of stocked warehouses. The problem also has constraints, including the warehouse capacities and the maximum possible number of shipping from each warehouse. Since the commonly used uniform crossover tends to be destructive in this problem, we propose four crossovers for the problem: the item, the warehouse, the item uniform, the warehouse uniform crossovers. Experimental results show that the proposed item crossover is suited to solve this problem, and the obtained item stock allocations can significantly reduce shipping and stocking costs compared with a human-made allocation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日本电子商务的演化现实世界物品库存分配
这项工作解决了一个现实世界的项目库存分配使用进化优化日本电子商务。我们使用要订购的物品的实际数据、现有仓库和客户的订单记录。目标区域遍布日本。任务是找到1000件物品到8个仓库的最佳分配。该问题有两个目标:最小化总运输成本和最小化库存仓库的平均数量。这个问题也有限制,包括仓库容量和每个仓库的最大可能装运数量。由于该问题中常用的统一交叉往往具有破坏性,因此我们针对该问题提出了四种交叉:物品、仓库、物品统一、仓库统一交叉。实验结果表明,该方法可以有效地解决这一问题,得到的物品库存分配比人工分配能显著降低运输和库存成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1