Global Optimization of MCMs with ASICs Using Concurrent Engineering

J. Cazenave, G. Dupenloup
{"title":"Global Optimization of MCMs with ASICs Using Concurrent Engineering","authors":"J. Cazenave, G. Dupenloup","doi":"10.1109/ICMCM.1994.753581","DOIUrl":null,"url":null,"abstract":"This paper describes a large MCM developed for space applications. Design constraints were extremely severe: low volume, low weight, high signal speed, minimum power consumption, high pressure, exposition to space vacuum. The MCM includes 1.2 million of transistors. It required the design of 8 different types of ASICs in 3 different technologies: CMOS, ECL, mixed-signal bipolar. The substrate has been fabricated using Dassault Electronique's high-density photo-imageable thick-film process (PCM technology), that is briefly described in this paper. An Aluminium package was used to save weight and improve thermal conduction. Stand-offs sustaining the lid were used to handle high pressure. The MCM and the ASICs were concurrently designed to simplify the layout of the MCM as much as possible. Despite high routing density, only 4 layers were used. Heavy traffic was \"pushed\" into ASICs where there is no significant extra cost associated with connections. The ASIC pads were arranged to match MCM wires. A global Design-For-Test strategy has been implemented. The ASICs include internal and external Built-In Self Test (BIST) resources, that allow to test the ASICs and the MCM connections at full speed and with no external test vectors. Test modes can be controlled and defaults can be located through a single test bus based on the IEEE 1149.1 (JTAG) standard. The MCM can be fully tested with no other test equipment than a standard PC connected to its test bus.","PeriodicalId":363745,"journal":{"name":"Proceedings of the International Conference on Multichip Modules","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Multichip Modules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCM.1994.753581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a large MCM developed for space applications. Design constraints were extremely severe: low volume, low weight, high signal speed, minimum power consumption, high pressure, exposition to space vacuum. The MCM includes 1.2 million of transistors. It required the design of 8 different types of ASICs in 3 different technologies: CMOS, ECL, mixed-signal bipolar. The substrate has been fabricated using Dassault Electronique's high-density photo-imageable thick-film process (PCM technology), that is briefly described in this paper. An Aluminium package was used to save weight and improve thermal conduction. Stand-offs sustaining the lid were used to handle high pressure. The MCM and the ASICs were concurrently designed to simplify the layout of the MCM as much as possible. Despite high routing density, only 4 layers were used. Heavy traffic was "pushed" into ASICs where there is no significant extra cost associated with connections. The ASIC pads were arranged to match MCM wires. A global Design-For-Test strategy has been implemented. The ASICs include internal and external Built-In Self Test (BIST) resources, that allow to test the ASICs and the MCM connections at full speed and with no external test vectors. Test modes can be controlled and defaults can be located through a single test bus based on the IEEE 1149.1 (JTAG) standard. The MCM can be fully tested with no other test equipment than a standard PC connected to its test bus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于并行工程的集成集成电路mcm全局优化
本文介绍了一种用于空间应用的大型MCM。设计限制非常严格:小体积,轻重量,高信号速度,最小功耗,高压,暴露于空间真空。MCM包含120万个晶体管。它需要设计8种不同类型的asic,采用3种不同的技术:CMOS、ECL、混合信号双极。采用达索电子公司的高密度光可成像厚膜工艺(PCM)制备了衬底,本文对其进行了简要介绍。铝制包装用于减轻重量和改善热传导。支撑盖子的支架被用来处理高压。MCM和asic同时设计,以尽可能简化MCM的布局。尽管路由密度很高,但只使用了4层。大量的流量被“推”到asic中,在那里没有与连接相关的显著额外成本。ASIC衬垫与MCM导线相匹配。实施了全球性的“为测试而设计”战略。asic包括内部和外部内置自我测试(BIST)资源,允许在全速测试asic和MCM连接,而无需外部测试向量。通过基于IEEE 1149.1 (JTAG)标准的单个测试总线,可以控制测试模式并确定默认值。MCM可以完全测试,没有其他测试设备,只有一个标准的PC连接到它的测试总线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume Implementation of MCM-D Based Cache SRAM Products for Workstation and PC Applications Evaluation of Ionic Salt Photodefinable Polyimides As Mcm-D Dielectrics with Copper Metallization An Application Strategy for Scm-L and Mcm-L Using High Density Laminate Technologies Integrated Flex: Rigid-Flex Capability in a High Performance Mcm Multichip module technologies for high-speed ATM switching systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1