{"title":"Power sharing control strategy for a no-storage hydrokinetic-diesel system in an isolated AC mini-grid","authors":"M. Ashourianjozdani, L. Lopes, P. Pillay","doi":"10.1109/PESGM.2016.7741177","DOIUrl":null,"url":null,"abstract":"The operation of diesel engine generator sets (gensets) with light loading leads to deterioration in the engine performance and efficiency. This problem is intensified in no-storage hydrokinetic-diesel systems since the genset is usually oversized to make-up for the potential shortage of renewable energy. In this paper, a new power sharing control strategy has been developed which minimizes this issue using a hydrokinetic energy conversion system (HKECS) that employs a diode AC-DC converter and voltage source inverter. The genset works with a frequency vs. power droop control. The HKECS is controlled with maximum power point tracking unless the grid frequency rises above a limit that indicates the underloading of the genset. At this point, a controlled DC load is activated so as to decrease the power injected by the HKECS thus regulating the grid frequency at this operating point. The proposed strategy is verified with a set-up with rotating machines and power electronic converters controlled via a dSPACE® system. The dynamic and steady-state operation of the system including power balancing, voltage and frequency control are presented.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The operation of diesel engine generator sets (gensets) with light loading leads to deterioration in the engine performance and efficiency. This problem is intensified in no-storage hydrokinetic-diesel systems since the genset is usually oversized to make-up for the potential shortage of renewable energy. In this paper, a new power sharing control strategy has been developed which minimizes this issue using a hydrokinetic energy conversion system (HKECS) that employs a diode AC-DC converter and voltage source inverter. The genset works with a frequency vs. power droop control. The HKECS is controlled with maximum power point tracking unless the grid frequency rises above a limit that indicates the underloading of the genset. At this point, a controlled DC load is activated so as to decrease the power injected by the HKECS thus regulating the grid frequency at this operating point. The proposed strategy is verified with a set-up with rotating machines and power electronic converters controlled via a dSPACE® system. The dynamic and steady-state operation of the system including power balancing, voltage and frequency control are presented.