Optimization of pull-in voltage and contact force for MEMS series switch using Taguchi method

Abhijeet Kshirsagar, P. Apte, S. Duttagupta, S. Gangal
{"title":"Optimization of pull-in voltage and contact force for MEMS series switch using Taguchi method","authors":"Abhijeet Kshirsagar, P. Apte, S. Duttagupta, S. Gangal","doi":"10.1109/SMELEC.2010.5549363","DOIUrl":null,"url":null,"abstract":"Cantilever based metal-to-metal contact type MEMS series switch has many applications namely in RFMEMS, Power MEMS etc. A typical MEMS switch consists of a cantilever as actuating element to make the contact between the two metal terminals of the switch. In electrostatic type switches the cantilever is pulled down by applying a pull-in voltage to the control electrode that is located below the middle portion of the cantilever while only the tip portion of the cantilever makes contact between the two terminals. Detailed analysis of bending of the cantilever for different pull-in voltages reveals some interesting facts. At low pull-in voltage the cantilever tip barely touches the two terminals, thus resulting in very less contact area. To increase contact area a very high pull-in voltage is applied. However it lifts the tip from the free end due to concave curving of the cantilever in the middle region of the cantilever where the electrode is located. It again results in less contact area. Furthermore, the high pull-in voltage produces large stress at the base of the cantilever close to the anchor. Therefore, an optimum, pull-in voltage must exist at which the concave curving is eliminated and contact area is maximum. In this paper authors report the procedure for finding a optimum voltage that can give maximum contact force across the two terminals. Taguchi method which is well suited to solve such optimization problem is used in the present work. The switch parameters, like cantilever length, cantilever width, electrode position, thickness of the metal of two terminals, are taken as 'control factors' with 4 levels each and simulation is performed for various combinations of the control factors as these appear in the rows of the L16 orthogonal array. The paper reports the optimum design of the MEMS switch.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Cantilever based metal-to-metal contact type MEMS series switch has many applications namely in RFMEMS, Power MEMS etc. A typical MEMS switch consists of a cantilever as actuating element to make the contact between the two metal terminals of the switch. In electrostatic type switches the cantilever is pulled down by applying a pull-in voltage to the control electrode that is located below the middle portion of the cantilever while only the tip portion of the cantilever makes contact between the two terminals. Detailed analysis of bending of the cantilever for different pull-in voltages reveals some interesting facts. At low pull-in voltage the cantilever tip barely touches the two terminals, thus resulting in very less contact area. To increase contact area a very high pull-in voltage is applied. However it lifts the tip from the free end due to concave curving of the cantilever in the middle region of the cantilever where the electrode is located. It again results in less contact area. Furthermore, the high pull-in voltage produces large stress at the base of the cantilever close to the anchor. Therefore, an optimum, pull-in voltage must exist at which the concave curving is eliminated and contact area is maximum. In this paper authors report the procedure for finding a optimum voltage that can give maximum contact force across the two terminals. Taguchi method which is well suited to solve such optimization problem is used in the present work. The switch parameters, like cantilever length, cantilever width, electrode position, thickness of the metal of two terminals, are taken as 'control factors' with 4 levels each and simulation is performed for various combinations of the control factors as these appear in the rows of the L16 orthogonal array. The paper reports the optimum design of the MEMS switch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用田口法优化MEMS串联开关的拉入电压和接触力
基于悬臂的金属对金属接触式MEMS系列开关在RFMEMS、Power MEMS等领域有着广泛的应用。典型的MEMS开关由悬臂梁作为驱动元件,使开关的两个金属端子之间产生接触。在静电型开关中,通过向位于悬臂中部下方的控制电极施加拉入电压来拉下悬臂,而只有悬臂的尖端部分在两个端子之间接触。对悬臂梁在不同拉入电压下弯曲的详细分析揭示了一些有趣的事实。在低拉入电压下,悬臂顶端几乎不接触两个端子,因此接触面积非常小。为了增加接触面积,施加了很高的拉入电压。然而,由于在电极所在的悬臂的中间区域悬臂的凹弯曲,它将尖端从自由端抬起。这又导致了接触面积的减少。此外,高拉入电压在靠近锚的悬臂梁底部产生较大的应力。因此,必须存在一个最优的拉入电压,在这个电压下,凹曲线被消除,接触面积最大。在本文中,作者报告了寻找一个最佳电压的过程,该电压可以使两个端子之间的接触力最大。田口法是一种很适合求解这类优化问题的方法。将开关参数,如悬臂长度、悬臂宽度、电极位置、两个端子的金属厚度等作为“控制因素”,每个控制因素有4个级别,并对L16正交阵列中出现的控制因素的各种组合进行模拟。本文报道了MEMS开关的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sensing performance of hydrogen gas sensor utilizing undoped-AlGaN/GaN HEMT Optimum design of SU-8 based accelerometer with reduced cross axis sensitivity A 5-GHZ VCO for WLAN applications Effect of Mn doping on the structural and optical properties of ZnO films Ubiquitous sensor technologies: The way moving forward
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1