Speech/music discrimination for analysis of radio stations

Stanisław Kacprzak, Blazej Chwiecko, B. Ziółko
{"title":"Speech/music discrimination for analysis of radio stations","authors":"Stanisław Kacprzak, Blazej Chwiecko, B. Ziółko","doi":"10.1109/IWSSIP.2017.7965606","DOIUrl":null,"url":null,"abstract":"A computationally efficient feature, called Minimum Energy Density (MED) was applied to discriminate audio signals between speech and music in the radio stations programs. The presented binary classifier is based on testing two features: energy distribution and differences between energy in channels. We analyzed 240 hours of signals, from 10 Polish radio stations. Our analysis enables us to provide information about content of particular radio stations.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A computationally efficient feature, called Minimum Energy Density (MED) was applied to discriminate audio signals between speech and music in the radio stations programs. The presented binary classifier is based on testing two features: energy distribution and differences between energy in channels. We analyzed 240 hours of signals, from 10 Polish radio stations. Our analysis enables us to provide information about content of particular radio stations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于广播电台分析的语音/音乐辨别
最小能量密度(MED)是一种计算效率高的特征,用于区分广播电台节目中的语音和音乐音频信号。所提出的二值分类器是基于测试两个特征:通道内的能量分布和能量差。我们分析了来自10个波兰广播电台的240小时的信号。我们的分析使我们能够提供有关特定广播电台内容的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient frame-compatible stereoscopic video coding using HEVC screen content coding Reinforcement learning for video encoder control in HEVC Software and hardware HEVC encoding Ensemble of CNN and rich model for steganalysis IVQAD 2017: An immersive video quality assessment database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1