Functional connectivity in cultured cortical networks during development: Comparison between correlation and information theory-based algorithms

Daniele Poli, Vito Paolo Pastore, P. Massobrio, S. Martinoia
{"title":"Functional connectivity in cultured cortical networks during development: Comparison between correlation and information theory-based algorithms","authors":"Daniele Poli, Vito Paolo Pastore, P. Massobrio, S. Martinoia","doi":"10.1109/NER.2015.7146637","DOIUrl":null,"url":null,"abstract":"Goal of this work is to present a general approach to estimate functional connectivity in in vitro cortical networks coupled to Micro-Electrode Array (MEAs). Specifically, we developed and optimized a Partial Correlation (PC) based algorithm and we compared it to Cross Correlation (CC) and Transfer Entropy (TE) methods. First, we applied the algorithms to simulated networks with different average connectivity degrees. Second, we used a specific validation procedure based on the accuracy coefficient (ACC) to evaluate the algorithm's performances and we found Partial Correlation to be the best method to infer functional connections from spiking activity of in vitro cortical networks. Finally, we used PC to estimate connectivity during development (i.e., from 2nd to 4th week) from recordings of cortical networks coupled to MEAs.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Goal of this work is to present a general approach to estimate functional connectivity in in vitro cortical networks coupled to Micro-Electrode Array (MEAs). Specifically, we developed and optimized a Partial Correlation (PC) based algorithm and we compared it to Cross Correlation (CC) and Transfer Entropy (TE) methods. First, we applied the algorithms to simulated networks with different average connectivity degrees. Second, we used a specific validation procedure based on the accuracy coefficient (ACC) to evaluate the algorithm's performances and we found Partial Correlation to be the best method to infer functional connections from spiking activity of in vitro cortical networks. Finally, we used PC to estimate connectivity during development (i.e., from 2nd to 4th week) from recordings of cortical networks coupled to MEAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发育过程中培养皮层网络的功能连通性:相关性和基于信息理论的算法的比较
这项工作的目的是提出一种通用的方法来估计与微电极阵列(MEAs)耦合的体外皮层网络的功能连接。具体而言,我们开发并优化了一种基于偏相关(PC)的算法,并将其与相互关联(CC)和传递熵(TE)方法进行了比较。首先,我们将算法应用于具有不同平均连接度的模拟网络。其次,我们使用基于准确度系数(ACC)的特定验证程序来评估算法的性能,我们发现偏相关是从体外皮层网络的峰值活动推断功能连接的最佳方法。最后,我们使用PC从连接到mea的皮质网络记录中估计发育期间(即第2至第4周)的连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1