Asymptotic Full Actuation Control for A Class of Nonlinear Systems

Fei Yan, G. Gu
{"title":"Asymptotic Full Actuation Control for A Class of Nonlinear Systems","authors":"Fei Yan, G. Gu","doi":"10.1109/IAI55780.2022.9976657","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of full actuation control for a class of nonlinear systems, commonly seen in engineering applications. The class of nonlinear systems involves unknown and uncertain parameters, rendering the design of feed-back controllers very challenging, especially for the full actuation control. To tackle the design issue in the presence of parameter uncertainties, the asymptotic full actuation control is proposed, aimed at achieving the full actuation control asymptotically. We first develop an adaptive control algorithm, reminiscent to the well-known backstepping control, to achieve the asymptotic global stabilization for the class of nonlinear systems, in the absence of convergence for the parameter estimates to their respective true values. The well-known recursive least-squares algorithm is then employed to estimate system parameters via sampling the output and other system signals. The asymptotic convergence of the estimates to the true system parameters and hence the asymptotic full actuation are then shown to hold for the class of nonlinear systems under some mild assumptions.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the issue of full actuation control for a class of nonlinear systems, commonly seen in engineering applications. The class of nonlinear systems involves unknown and uncertain parameters, rendering the design of feed-back controllers very challenging, especially for the full actuation control. To tackle the design issue in the presence of parameter uncertainties, the asymptotic full actuation control is proposed, aimed at achieving the full actuation control asymptotically. We first develop an adaptive control algorithm, reminiscent to the well-known backstepping control, to achieve the asymptotic global stabilization for the class of nonlinear systems, in the absence of convergence for the parameter estimates to their respective true values. The well-known recursive least-squares algorithm is then employed to estimate system parameters via sampling the output and other system signals. The asymptotic convergence of the estimates to the true system parameters and hence the asymptotic full actuation are then shown to hold for the class of nonlinear systems under some mild assumptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类非线性系统的渐近全驱动控制
本文讨论了工程应用中常见的一类非线性系统的全作动控制问题。非线性系统涉及未知和不确定的参数,使得反馈控制器的设计非常具有挑战性,特别是对于全驱动控制。为了解决存在参数不确定性时的设计问题,提出渐近全驱动控制,旨在渐近地实现全驱动控制。我们首先开发了一种自适应控制算法,让人联想到众所周知的后退控制,以实现非线性系统在参数估计到各自真值不收敛的情况下的渐近全局镇定。然后使用众所周知的递归最小二乘算法通过对输出和其他系统信号进行采样来估计系统参数。在一些温和的假设下,证明了系统真参数估计的渐近收敛性和渐近全致动性对非线性系统是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Element Component Content Based on Mechanism Analysis and Error Compensation An Improved Genetic Algorithm for Solving Tri-level Programming Problems Dynamic multi-objective optimization algorithm based on weighted differential prediction model Quality defect analysis of injection molding based on gradient enhanced Kriging model Leader-Follower Consensus Control For Multi-Spacecraft With The Attitude Observers On SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1