Material map generation using hyper-spectral NIR images

Dong-Keun Han, Jeonghyo Ha, Jong-Ok Kim
{"title":"Material map generation using hyper-spectral NIR images","authors":"Dong-Keun Han, Jeonghyo Ha, Jong-Ok Kim","doi":"10.1109/ICEIC57457.2023.10049950","DOIUrl":null,"url":null,"abstract":"The hyper-spectral curve on the near-infrared (NIR) bands commonly exhibits distinct characteristics for each surface material. NIR information can be a useful clue to identify the surface material of an object. In this paper, the surface material of each local patch is first classified by a deep network from NIR hyper-spectral images, and then, those classification results are collected to obtain the surface material map of an entire scene. To train the classification network, we built a hyper-spectral dataset which includes 5 different materials. Experimental results show that we can get a quite effective material map.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The hyper-spectral curve on the near-infrared (NIR) bands commonly exhibits distinct characteristics for each surface material. NIR information can be a useful clue to identify the surface material of an object. In this paper, the surface material of each local patch is first classified by a deep network from NIR hyper-spectral images, and then, those classification results are collected to obtain the surface material map of an entire scene. To train the classification network, we built a hyper-spectral dataset which includes 5 different materials. Experimental results show that we can get a quite effective material map.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用高光谱近红外图像生成材料贴图
近红外(NIR)波段的高光谱曲线通常对每种表面材料表现出不同的特征。近红外信息是识别物体表面材料的有用线索。本文首先从近红外高光谱图像中对每个局部斑块的表面材料进行深度网络分类,然后收集分类结果,得到整个场景的表面材料图。为了训练分类网络,我们建立了一个包含5种不同材料的超光谱数据集。实验结果表明,我们可以得到一个非常有效的材料图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWT+DWT: Deep Learning Domain Generalization Techniques Using Discrete Wavelet Transform with Deep Whitening Transform Fast Virtual Keyboard Typing Using Vowel Hand Gesture Recognition A Study on Edge Computing-Based Microservices Architecture Supporting IoT Device Management and Artificial Intelligence Inference Efficient Pavement Crack Detection in Drone Images using Deep Neural Networks High Performance 3.3KV 4H-SiC MOSFET with a Floating Island and Hetero Junction Diode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1