{"title":"Economic states on neuronic maps","authors":"C. Liou, Yen-Ting Kuo","doi":"10.1109/ICONIP.2002.1198166","DOIUrl":null,"url":null,"abstract":"We test the idea of visualizing economic statistics data on self-organization related maps, which are the LLE, ISOMAP and GTM maps. We report initial results of this work. These three maps all have distinguished theoretical foundations. The statistic data usually span high-dimensional space, sometimes more than 10 dimensions. To perceive these data as a whole and to foresee future trends, perspective visualization assistance is an important issue. We use economic statistics for the United States over the past 25 years (1977 to 2001) and apply them on the maps. The results from these three maps display historic events along with their trends and significance.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We test the idea of visualizing economic statistics data on self-organization related maps, which are the LLE, ISOMAP and GTM maps. We report initial results of this work. These three maps all have distinguished theoretical foundations. The statistic data usually span high-dimensional space, sometimes more than 10 dimensions. To perceive these data as a whole and to foresee future trends, perspective visualization assistance is an important issue. We use economic statistics for the United States over the past 25 years (1977 to 2001) and apply them on the maps. The results from these three maps display historic events along with their trends and significance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经地图上的经济状态
我们在自组织相关的地图(LLE、ISOMAP和GTM地图)上检验了经济统计数据可视化的思想。我们报告这项工作的初步结果。这三幅地图都有各自不同的理论基础。统计数据通常跨越高维空间,有时超过10维。为了从整体上理解这些数据并预见未来的趋势,透视可视化辅助是一个重要的问题。我们使用美国过去25年(1977年至2001年)的经济统计数据,并将其应用到地图上。这三幅地图的结果显示了历史事件及其趋势和意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1