Abstract action potential models for toxin recognition

J. Peterson, T. Khan
{"title":"Abstract action potential models for toxin recognition","authors":"J. Peterson, T. Khan","doi":"10.1080/10273660500533898","DOIUrl":null,"url":null,"abstract":"In this paper, we present a robust methodology using mathematical pattern recognition schemes to detect and classify events in action potentials for recognizing toxins in biological cells. We focus on event detection in action potential via abstraction of information content into a low dimensional feature vector within the constrained computational environment of a biosensor. We use generated families of action potentials from a classic Hodgkin–Huxley model to verify our methodology and build toxin recognition engines. We demonstrate that good recognition rates are achievable with our methodology.","PeriodicalId":294267,"journal":{"name":"Journal of Theoretical Medicine","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10273660500533898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a robust methodology using mathematical pattern recognition schemes to detect and classify events in action potentials for recognizing toxins in biological cells. We focus on event detection in action potential via abstraction of information content into a low dimensional feature vector within the constrained computational environment of a biosensor. We use generated families of action potentials from a classic Hodgkin–Huxley model to verify our methodology and build toxin recognition engines. We demonstrate that good recognition rates are achievable with our methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摘要:毒素识别的动作电位模型
在本文中,我们提出了一种强大的方法,使用数学模式识别方案来检测和分类识别生物细胞中毒素的动作电位事件。我们专注于通过将信息内容抽象为生物传感器有限计算环境中的低维特征向量来检测动作电位中的事件。我们使用从经典霍奇金-赫胥黎模型生成的动作电位族来验证我们的方法并构建毒素识别引擎。我们证明,使用我们的方法可以实现良好的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstract action potential models for toxin recognition A numerical investigation of heat transfer cardiac output measurements A coarse grained model for DNA and polymer packaging: statics and dynamics Flexibility and assembly of viral capsids Dissecting the fine details of assembly of a T=3 phage capsid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1