Seunghyun Kim, Do-Bin Kim, Eunseon Yu, Sang-Ho Lee, Seongjae Cho, Byung-Gook Park
{"title":"Effects of nitride trap layer properties on location of charge centroid in charge-trap flash memory","authors":"Seunghyun Kim, Do-Bin Kim, Eunseon Yu, Sang-Ho Lee, Seongjae Cho, Byung-Gook Park","doi":"10.23919/SNW.2017.8242306","DOIUrl":null,"url":null,"abstract":"In this study, the effects of nitride trap layer properties on location of charge centroid in charge-trap flash (CTF) memory are closely investigated. In the operations of CTF memories, charges tunnel into the nitride layer through thin oxide, unlike the floating-gate (FG) type flash memory where the charges are stored in the conductive poly-crystalline Si. Deeper understanding of distribution of the trapped charges should be beneficial in setting up an accurate compact model of CTF memory cell, where the charge centroid becomes a very practical means by which a rather large number of trapped electrons can be dealt in the more mathematical manner as a whole electron cloud. The relation between charge centroid and program voltage (Kpgm) depending on nitride layer properties is analytically studied.","PeriodicalId":424135,"journal":{"name":"2017 Silicon Nanoelectronics Workshop (SNW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2017.8242306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the effects of nitride trap layer properties on location of charge centroid in charge-trap flash (CTF) memory are closely investigated. In the operations of CTF memories, charges tunnel into the nitride layer through thin oxide, unlike the floating-gate (FG) type flash memory where the charges are stored in the conductive poly-crystalline Si. Deeper understanding of distribution of the trapped charges should be beneficial in setting up an accurate compact model of CTF memory cell, where the charge centroid becomes a very practical means by which a rather large number of trapped electrons can be dealt in the more mathematical manner as a whole electron cloud. The relation between charge centroid and program voltage (Kpgm) depending on nitride layer properties is analytically studied.