{"title":"Cryofixation of vascular endothelium.","authors":"R C Wagner, S B Andrews","doi":"10.1002/jemt.1060190304","DOIUrl":null,"url":null,"abstract":"<p><p>Cryofixation refers to the immobilization of tissue components by the rapid removal of heat from the specimen, so that the structure is interred and stabilized in a natural embedding medium, namely, frozen (amorphous or microcrystalline) tissue water. Cryofixation is now often used as a complement to the more traditional fixation methods, especially when the cell structure is delicate or dynamic and may be inaccurately preserved by the slow selective action of chemical fixatives. Vascular endothelial cells are specialized for transcellular transport and for the regulation of blood flow and composition. The dynamic and labile subcellular organization of these cells, presumably reflecting these functional specializations, makes them ideal candidates for cryofixation. Several different types of endothelial cells were directly frozen at temperatures below 20 degrees Kelvin by pressing them against a liquid-helium-cooled block. These samples were subsequently processed for structural analysis by freeze-substitution. Detailed rationales, designs, and protocols are described for both freezing and freeze-substitution. Electron micrographs of cryofixed arterial and venous capillaries (rete mirabile of the American eel), iliac vein (rabbit), and cultured endothelium from the iliac vein (human) reveal that the organization of the characteristic intracellular membrane system of endothelial vesicles is qualitatively similar to that seen in chemically fixed endothelium, especially with regard to the interconnection of clusters of individual vesicles to form elaborate networks. The luminal and abluminal networks are not in communication, at least not in static images. Quantitatively, however, most directly frozen endothelial cells have far fewer vesicular profiles than comparable glutaraldehyde-fixed cells. The differences can be explained by presuming that the rapid action of cryofixation (approximately 1 msec) gives a more accurate picture of the vesicular network because it captures the transient structure of labile or dynamic membranes.</p>","PeriodicalId":15690,"journal":{"name":"Journal of electron microscopy technique","volume":"19 3","pages":"276-90"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jemt.1060190304","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electron microscopy technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jemt.1060190304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Cryofixation refers to the immobilization of tissue components by the rapid removal of heat from the specimen, so that the structure is interred and stabilized in a natural embedding medium, namely, frozen (amorphous or microcrystalline) tissue water. Cryofixation is now often used as a complement to the more traditional fixation methods, especially when the cell structure is delicate or dynamic and may be inaccurately preserved by the slow selective action of chemical fixatives. Vascular endothelial cells are specialized for transcellular transport and for the regulation of blood flow and composition. The dynamic and labile subcellular organization of these cells, presumably reflecting these functional specializations, makes them ideal candidates for cryofixation. Several different types of endothelial cells were directly frozen at temperatures below 20 degrees Kelvin by pressing them against a liquid-helium-cooled block. These samples were subsequently processed for structural analysis by freeze-substitution. Detailed rationales, designs, and protocols are described for both freezing and freeze-substitution. Electron micrographs of cryofixed arterial and venous capillaries (rete mirabile of the American eel), iliac vein (rabbit), and cultured endothelium from the iliac vein (human) reveal that the organization of the characteristic intracellular membrane system of endothelial vesicles is qualitatively similar to that seen in chemically fixed endothelium, especially with regard to the interconnection of clusters of individual vesicles to form elaborate networks. The luminal and abluminal networks are not in communication, at least not in static images. Quantitatively, however, most directly frozen endothelial cells have far fewer vesicular profiles than comparable glutaraldehyde-fixed cells. The differences can be explained by presuming that the rapid action of cryofixation (approximately 1 msec) gives a more accurate picture of the vesicular network because it captures the transient structure of labile or dynamic membranes.