{"title":"Image Generation Model Applying PCA on Latent Space","authors":"Myungseo Song, Asim Niaz, K. Choi","doi":"10.1145/3590003.3590080","DOIUrl":null,"url":null,"abstract":"Image generation is an important area of artificial intelligence that involves creating new images from existing datasets. It involves learning the distribution of target images from randomly generated vectors. Like other deep learning models, the image generation model requires a vast refined data set to produce high-quality results. When there is little data, there is a problem that the diversity and quality of generated images are compromised. In this paper, we propose a new generative model that applies PCA to the generator of the least square error adversarial generative network that, in turn, generates high-quality images even with a small data set. Unlike the existing models that generate target data from randomly generated noise, in the proposed method the direction of the image to be generated is guided by extracting the features of the target data through PCA. The results section shows the superior performance of the proposed model against a different number of images in datasets.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"63 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Image generation is an important area of artificial intelligence that involves creating new images from existing datasets. It involves learning the distribution of target images from randomly generated vectors. Like other deep learning models, the image generation model requires a vast refined data set to produce high-quality results. When there is little data, there is a problem that the diversity and quality of generated images are compromised. In this paper, we propose a new generative model that applies PCA to the generator of the least square error adversarial generative network that, in turn, generates high-quality images even with a small data set. Unlike the existing models that generate target data from randomly generated noise, in the proposed method the direction of the image to be generated is guided by extracting the features of the target data through PCA. The results section shows the superior performance of the proposed model against a different number of images in datasets.